summaryrefslogtreecommitdiff
path: root/theories/Classes/SetoidDec.v
blob: bac6472442ec61e9be72e1588817f3f7d21c3b2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Decidable setoid equality theory.
 *
 * Author: Matthieu Sozeau
 * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
 *              91405 Orsay, France *)

(* $Id: SetoidDec.v 11800 2009-01-18 18:34:15Z msozeau $ *)

Set Implicit Arguments.
Unset Strict Implicit.

(** Export notations. *)

Require Export Coq.Classes.SetoidClass.

(** The [DecidableSetoid] class asserts decidability of a [Setoid]. It can be useful in proofs to reason more 
   classically. *)

Require Import Coq.Logic.Decidable.

Class DecidableSetoid `(S : Setoid A) :=
  setoid_decidable : forall x y : A, decidable (x == y).

(** The [EqDec] class gives a decision procedure for a particular setoid equality. *)

Class EqDec `(S : Setoid A) :=
  equiv_dec : forall x y : A, { x == y } + { x =/= y }.

(** We define the [==] overloaded notation for deciding equality. It does not take precedence
   of [==] defined in the type scope, hence we can have both at the same time. *)

Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70).

Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } :=
  match x with
    | left H => @right _ _ H 
    | right H => @left _ _ H 
  end.

Require Import Coq.Program.Program.

Open Local Scope program_scope.

(** Invert the branches. *)

Program Definition nequiv_dec `{EqDec A} (x y : A) : { x =/= y } + { x == y } := swap_sumbool (x == y).

(** Overloaded notation for inequality. *)

Infix "=/=" := nequiv_dec (no associativity, at level 70).

(** Define boolean versions, losing the logical information. *)

Definition equiv_decb `{EqDec A} (x y : A) : bool :=
  if x == y then true else false.

Definition nequiv_decb `{EqDec A} (x y : A) : bool :=
  negb (equiv_decb x y).

Infix "==b" := equiv_decb (no associativity, at level 70).
Infix "<>b" := nequiv_decb (no associativity, at level 70).

(** Decidable leibniz equality instances. *)

Require Import Coq.Arith.Arith.

(** The equiv is burried inside the setoid, but we can recover it by specifying which setoid we're talking about. *)

Program Instance eq_setoid A : Setoid A | 10 :=
  { equiv := eq ; setoid_equiv := eq_equivalence }.

Program Instance nat_eq_eqdec : EqDec (eq_setoid nat) :=
  eq_nat_dec.

Require Import Coq.Bool.Bool.

Program Instance bool_eqdec : EqDec (eq_setoid bool) :=
  bool_dec.

Program Instance unit_eqdec : EqDec (eq_setoid unit) :=
  λ x y, in_left.

  Next Obligation.
  Proof.
    destruct x ; destruct y.
    reflexivity.
  Qed.

Program Instance prod_eqdec `(! EqDec (eq_setoid A), ! EqDec (eq_setoid B)) : EqDec (eq_setoid (prod A B)) :=
  λ x y,
    let '(x1, x2) := x in 
    let '(y1, y2) := y in 
    if x1 == y1 then 
      if x2 == y2 then in_left
      else in_right
    else in_right.

  Solve Obligations using unfold complement ; program_simpl.

(** Objects of function spaces with countable domains like bool have decidable equality. *)

Program Instance bool_function_eqdec `(! EqDec (eq_setoid A)) : EqDec (eq_setoid (bool -> A)) :=
  λ f g,
    if f true == g true then
      if f false == g false then in_left
      else in_right
    else in_right.

  Solve Obligations using try red ; unfold equiv, complement ; program_simpl.

  Next Obligation.
  Proof.
    extensionality x.
    destruct x ; auto.
  Qed.