blob: 03bb9a806eb5cf0bb0e44e64adfb645472e80d95 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Extensionality axioms that can be used when reasoning with setoids.
*
* Author: Matthieu Sozeau
* Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
* 91405 Orsay, France *)
(* $Id: SetoidAxioms.v 12083 2009-04-14 07:22:18Z herbelin $ *)
Require Import Coq.Program.Program.
Set Implicit Arguments.
Unset Strict Implicit.
Require Export Coq.Classes.SetoidClass.
(* Application of the extensionality axiom to turn a goal on
Leibniz equality to a setoid equivalence (use with care!). *)
Axiom setoideq_eq : forall `{sa : Setoid a} (x y : a), x == y -> x = y.
(** Application of the extensionality principle for setoids. *)
Ltac setoid_extensionality :=
match goal with
[ |- @eq ?A ?X ?Y ] => apply (setoideq_eq (a:=A) (x:=X) (y:=Y))
end.
|