1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
(* -*- coq-prog-name: "coqtop.byte"; coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.RelationClasses") -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Typeclass-based relations, tactics and standard instances.
This is the basic theory needed to formalize morphisms and setoids.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
91405 Orsay, France *)
(* $Id: RelationClasses.v 11282 2008-07-28 11:51:53Z msozeau $ *)
Require Export Coq.Classes.Init.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Export Coq.Relations.Relation_Definitions.
(** We allow to unfold the [relation] definition while doing morphism search. *)
Typeclasses unfold relation.
Notation inverse R := (flip (R:relation _) : relation _).
Definition complement {A} (R : relation A) : relation A := fun x y => R x y -> False.
(** These are convertible. *)
Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R).
Proof. reflexivity. Qed.
(** We rebind relations in separate classes to be able to overload each proof. *)
Set Implicit Arguments.
Unset Strict Implicit.
Class Reflexive A (R : relation A) :=
reflexivity : forall x, R x x.
Class Irreflexive A (R : relation A) :=
irreflexivity :> Reflexive (complement R).
Class Symmetric A (R : relation A) :=
symmetry : forall x y, R x y -> R y x.
Class Asymmetric A (R : relation A) :=
asymmetry : forall x y, R x y -> R y x -> False.
Class Transitive A (R : relation A) :=
transitivity : forall x y z, R x y -> R y z -> R x z.
Hint Resolve @irreflexivity : ord.
Unset Implicit Arguments.
(** We can already dualize all these properties. *)
Program Instance flip_Reflexive [ Reflexive A R ] : Reflexive (flip R) :=
reflexivity := reflexivity (R:=R).
Program Instance flip_Irreflexive [ Irreflexive A R ] : Irreflexive (flip R) :=
irreflexivity := irreflexivity (R:=R).
Program Instance flip_Symmetric [ Symmetric A R ] : Symmetric (flip R).
Solve Obligations using unfold flip ; program_simpl ; clapply Symmetric.
Program Instance flip_Asymmetric [ Asymmetric A R ] : Asymmetric (flip R).
Solve Obligations using program_simpl ; unfold flip in * ; intros ; clapply asymmetry.
Program Instance flip_Transitive [ Transitive A R ] : Transitive (flip R).
Solve Obligations using unfold flip ; program_simpl ; clapply transitivity.
Program Instance Reflexive_complement_Irreflexive [ Reflexive A (R : relation A) ]
: Irreflexive (complement R).
Next Obligation.
Proof.
unfold complement.
red. intros H.
intros H' ; apply H'.
apply reflexivity.
Qed.
Program Instance complement_Symmetric [ Symmetric A (R : relation A) ] : Symmetric (complement R).
Next Obligation.
Proof.
red ; intros H'.
apply (H (symmetry H')).
Qed.
(** * Standard instances. *)
Ltac reduce_hyp H :=
match type of H with
| context [ _ <-> _ ] => fail 1
| _ => red in H ; try reduce_hyp H
end.
Ltac reduce_goal :=
match goal with
| [ |- _ <-> _ ] => fail 1
| _ => red ; intros ; try reduce_goal
end.
Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
Ltac reduce := reduce_goal.
Tactic Notation "apply" "*" constr(t) :=
first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
Ltac simpl_relation :=
unfold flip, impl, arrow ; try reduce ; program_simpl ;
try ( solve [ intuition ]).
Ltac obligation_tactic ::= simpl_relation.
(** Logical implication. *)
Program Instance impl_Reflexive : Reflexive impl.
Program Instance impl_Transitive : Transitive impl.
(** Logical equivalence. *)
Program Instance iff_Reflexive : Reflexive iff.
Program Instance iff_Symmetric : Symmetric iff.
Program Instance iff_Transitive : Transitive iff.
(** Leibniz equality. *)
Program Instance eq_Reflexive : Reflexive (@eq A).
Program Instance eq_Symmetric : Symmetric (@eq A).
Program Instance eq_Transitive : Transitive (@eq A).
(** Various combinations of reflexivity, symmetry and transitivity. *)
(** A [PreOrder] is both Reflexive and Transitive. *)
Class PreOrder A (R : relation A) : Prop :=
PreOrder_Reflexive :> Reflexive R ;
PreOrder_Transitive :> Transitive R.
(** A partial equivalence relation is Symmetric and Transitive. *)
Class PER (carrier : Type) (pequiv : relation carrier) : Prop :=
PER_Symmetric :> Symmetric pequiv ;
PER_Transitive :> Transitive pequiv.
(** Equivalence relations. *)
Class Equivalence (carrier : Type) (equiv : relation carrier) : Prop :=
Equivalence_Reflexive :> Reflexive equiv ;
Equivalence_Symmetric :> Symmetric equiv ;
Equivalence_Transitive :> Transitive equiv.
(** An Equivalence is a PER plus reflexivity. *)
Instance Equivalence_PER [ Equivalence A R ] : PER A R | 10 :=
PER_Symmetric := Equivalence_Symmetric ;
PER_Transitive := Equivalence_Transitive.
(** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *)
Class Antisymmetric ((equ : Equivalence A eqA)) (R : relation A) :=
antisymmetry : forall x y, R x y -> R y x -> eqA x y.
Program Instance flip_antiSymmetric {{Antisymmetric A eqA R}} :
! Antisymmetric A eqA (flip R).
(** Leibinz equality [eq] is an equivalence relation.
The instance has low priority as it is always applicable
if only the type is constrained. *)
Program Instance eq_equivalence : Equivalence A (@eq A) | 10.
(** Logical equivalence [iff] is an equivalence relation. *)
Program Instance iff_equivalence : Equivalence Prop iff.
(** We now develop a generalization of results on relations for arbitrary predicates.
The resulting theory can be applied to homogeneous binary relations but also to
arbitrary n-ary predicates. *)
Require Import List.
(* Notation " [ ] " := nil : list_scope. *)
(* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *)
(* Open Local Scope list_scope. *)
(** A compact representation of non-dependent arities, with the codomain singled-out. *)
Fixpoint arrows (l : list Type) (r : Type) : Type :=
match l with
| nil => r
| A :: l' => A -> arrows l' r
end.
(** We can define abbreviations for operation and relation types based on [arrows]. *)
Definition unary_operation A := arrows (cons A nil) A.
Definition binary_operation A := arrows (cons A (cons A nil)) A.
Definition ternary_operation A := arrows (cons A (cons A (cons A nil))) A.
(** We define n-ary [predicate]s as functions into [Prop]. *)
Notation predicate l := (arrows l Prop).
(** Unary predicates, or sets. *)
Definition unary_predicate A := predicate (cons A nil).
(** Homogeneous binary relations, equivalent to [relation A]. *)
Definition binary_relation A := predicate (cons A (cons A nil)).
(** We can close a predicate by universal or existential quantification. *)
Fixpoint predicate_all (l : list Type) : predicate l -> Prop :=
match l with
| nil => fun f => f
| A :: tl => fun f => forall x : A, predicate_all tl (f x)
end.
Fixpoint predicate_exists (l : list Type) : predicate l -> Prop :=
match l with
| nil => fun f => f
| A :: tl => fun f => exists x : A, predicate_exists tl (f x)
end.
(** Pointwise extension of a binary operation on [T] to a binary operation
on functions whose codomain is [T].
For an operator on [Prop] this lifts the operator to a binary operation. *)
Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
(l : list Type) : binary_operation (arrows l T) :=
match l with
| nil => fun R R' => op R R'
| A :: tl => fun R R' =>
fun x => pointwise_extension op tl (R x) (R' x)
end.
(** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *)
Fixpoint pointwise_lifting (op : binary_relation Prop) (l : list Type) : binary_relation (predicate l) :=
match l with
| nil => fun R R' => op R R'
| A :: tl => fun R R' =>
forall x, pointwise_lifting op tl (R x) (R' x)
end.
(** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *)
Definition predicate_equivalence {l : list Type} : binary_relation (predicate l) :=
pointwise_lifting iff l.
(** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *)
Definition predicate_implication {l : list Type} :=
pointwise_lifting impl l.
(** Notations for pointwise equivalence and implication of predicates. *)
Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
Infix "-∙>" := predicate_implication (at level 70) : predicate_scope.
Open Local Scope predicate_scope.
(** The pointwise liftings of conjunction and disjunctions.
Note that these are [binary_operation]s, building new relations out of old ones. *)
Definition predicate_intersection := pointwise_extension and.
Definition predicate_union := pointwise_extension or.
Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
(** The always [True] and always [False] predicates. *)
Fixpoint true_predicate {l : list Type} : predicate l :=
match l with
| nil => True
| A :: tl => fun _ => @true_predicate tl
end.
Fixpoint false_predicate {l : list Type} : predicate l :=
match l with
| nil => False
| A :: tl => fun _ => @false_predicate tl
end.
Notation "∙⊤∙" := true_predicate : predicate_scope.
Notation "∙⊥∙" := false_predicate : predicate_scope.
(** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *)
Program Instance predicate_equivalence_equivalence :
Equivalence (predicate l) predicate_equivalence.
Next Obligation.
induction l ; firstorder.
Qed.
Next Obligation.
induction l ; firstorder.
Qed.
Next Obligation.
fold pointwise_lifting.
induction l. firstorder.
intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)).
firstorder.
Qed.
Program Instance predicate_implication_preorder :
PreOrder (predicate l) predicate_implication.
Next Obligation.
induction l ; firstorder.
Qed.
Next Obligation.
induction l. firstorder.
unfold predicate_implication in *. simpl in *.
intro. pose (IHl (x x0) (y x0) (z x0)). firstorder.
Qed.
(** We define the various operations which define the algebra on binary relations,
from the general ones. *)
Definition relation_equivalence {A : Type} : relation (relation A) :=
@predicate_equivalence (cons _ (cons _ nil)).
Class subrelation {A:Type} (R R' : relation A) : Prop :=
is_subrelation : @predicate_implication (cons A (cons A nil)) R R'.
Implicit Arguments subrelation [[A]].
Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A :=
@predicate_intersection (cons A (cons A nil)) R R'.
Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A :=
@predicate_union (cons A (cons A nil)) R R'.
(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
Instance relation_equivalence_equivalence (A : Type) :
Equivalence (relation A) relation_equivalence.
Proof. intro A. exact (@predicate_equivalence_equivalence (cons A (cons A nil))). Qed.
Instance relation_implication_preorder : PreOrder (relation A) subrelation.
Proof. intro A. exact (@predicate_implication_preorder (cons A (cons A nil))). Qed.
(** *** Partial Order.
A partial order is a preorder which is additionally antisymmetric.
We give an equivalent definition, up-to an equivalence relation
on the carrier. *)
Class [ equ : Equivalence A eqA, preo : PreOrder A R ] => PartialOrder :=
partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)).
(** The equivalence proof is sufficient for proving that [R] must be a morphism
for equivalence (see Morphisms).
It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *)
Instance partial_order_antisym [ PartialOrder A eqA R ] : ! Antisymmetric A eqA R.
Proof with auto.
reduce_goal. pose proof partial_order_equivalence as poe. do 3 red in poe.
apply <- poe. firstorder.
Qed.
(** The partial order defined by subrelation and relation equivalence. *)
Program Instance subrelation_partial_order :
! PartialOrder (relation A) relation_equivalence subrelation.
Next Obligation.
Proof.
unfold relation_equivalence in *. firstorder.
Qed.
|