blob: 2252e42fc52a1b262d8a1316e7ac8d5b481c2516 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** * [Proper] instances for propositional connectives.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Local Obligation Tactic := simpl_relation.
(** Standard instances for [not], [iff] and [impl]. *)
(** Logical negation. *)
Program Instance not_impl_morphism :
Proper (impl --> impl) not | 1.
Program Instance not_iff_morphism :
Proper (iff ++> iff) not.
(** Logical conjunction. *)
Program Instance and_impl_morphism :
Proper (impl ==> impl ==> impl) and | 1.
Program Instance and_iff_morphism :
Proper (iff ==> iff ==> iff) and.
(** Logical disjunction. *)
Program Instance or_impl_morphism :
Proper (impl ==> impl ==> impl) or | 1.
Program Instance or_iff_morphism :
Proper (iff ==> iff ==> iff) or.
(** Logical implication [impl] is a morphism for logical equivalence. *)
Program Instance iff_iff_iff_impl_morphism : Proper (iff ==> iff ==> iff) impl.
(** Morphisms for quantifiers *)
Program Instance ex_iff_morphism {A : Type} : Proper (pointwise_relation A iff ==> iff) (@ex A).
Next Obligation.
Proof.
unfold pointwise_relation in H.
split ; intros.
destruct H0 as [x1 H1].
exists x1. rewrite H in H1. assumption.
destruct H0 as [x1 H1].
exists x1. rewrite H. assumption.
Qed.
Program Instance ex_impl_morphism {A : Type} :
Proper (pointwise_relation A impl ==> impl) (@ex A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation in H.
exists H0. apply H. assumption.
Qed.
Program Instance ex_inverse_impl_morphism {A : Type} :
Proper (pointwise_relation A (inverse impl) ==> inverse impl) (@ex A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation in H.
exists H0. apply H. assumption.
Qed.
Program Instance all_iff_morphism {A : Type} :
Proper (pointwise_relation A iff ==> iff) (@all A).
Next Obligation.
Proof.
unfold pointwise_relation, all in *.
intuition ; specialize (H x0) ; intuition.
Qed.
Program Instance all_impl_morphism {A : Type} :
Proper (pointwise_relation A impl ==> impl) (@all A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation, all in *.
intuition ; specialize (H x0) ; intuition.
Qed.
Program Instance all_inverse_impl_morphism {A : Type} :
Proper (pointwise_relation A (inverse impl) ==> inverse impl) (@all A) | 1.
Next Obligation.
Proof.
unfold pointwise_relation, all in *.
intuition ; specialize (H x0) ; intuition.
Qed.
(** Equivalent points are simultaneously accessible or not *)
Instance Acc_pt_morphism {A:Type}(E R : A->A->Prop)
`(Equivalence _ E) `(Proper _ (E==>E==>iff) R) :
Proper (E==>iff) (Acc R).
Proof.
apply proper_sym_impl_iff; auto with *.
intros x y EQ WF. apply Acc_intro; intros z Hz.
rewrite <- EQ in Hz. now apply Acc_inv with x.
Qed.
(** Equivalent relations have the same accessible points *)
Instance Acc_rel_morphism {A:Type} :
Proper (@relation_equivalence A ==> Logic.eq ==> iff) (@Acc A).
Proof.
apply proper_sym_impl_iff_2. red; now symmetry. red; now symmetry.
intros R R' EQ a a' Ha WF. subst a'.
induction WF as [x _ WF']. constructor.
intros y Ryx. now apply WF', EQ.
Qed.
(** Equivalent relations are simultaneously well-founded or not *)
Instance well_founded_morphism {A : Type} :
Proper (@relation_equivalence A ==> iff) (@well_founded A).
Proof.
unfold well_founded. solve_proper.
Qed.
|