1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
(* -*- coq-prog-name: "~/research/coq/trunk/bin/coqtop.byte"; coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.Morphisms"); compile-command: "make -C ../.. TIME='time'" -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Typeclass-based morphism definition and standard, minimal instances.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
91405 Orsay, France *)
(* $Id: Morphisms.v 11282 2008-07-28 11:51:53Z msozeau $ *)
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Relations.Relation_Definitions.
Require Export Coq.Classes.RelationClasses.
Set Implicit Arguments.
Unset Strict Implicit.
(** * Morphisms.
We now turn to the definition of [Morphism] and declare standard instances.
These will be used by the [setoid_rewrite] tactic later. *)
(** A morphism on a relation [R] is an object respecting the relation (in its kernel).
The relation [R] will be instantiated by [respectful] and [A] by an arrow type
for usual morphisms. *)
Class Morphism A (R : relation A) (m : A) : Prop :=
respect : R m m.
(** We make the type implicit, it can be infered from the relations. *)
Implicit Arguments Morphism [A].
(** Respectful morphisms. *)
(** The fully dependent version, not used yet. *)
Definition respectful_hetero
(A B : Type)
(C : A -> Type) (D : B -> Type)
(R : A -> B -> Prop)
(R' : forall (x : A) (y : B), C x -> D y -> Prop) :
(forall x : A, C x) -> (forall x : B, D x) -> Prop :=
fun f g => forall x y, R x y -> R' x y (f x) (g y).
(** The non-dependent version is an instance where we forget dependencies. *)
Definition respectful (A B : Type)
(R : relation A) (R' : relation B) : relation (A -> B) :=
Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R').
(** Notations reminiscent of the old syntax for declaring morphisms. *)
Delimit Scope signature_scope with signature.
Arguments Scope Morphism [type_scope signature_scope].
Notation " R ++> R' " := (@respectful _ _ (R%signature) (R'%signature))
(right associativity, at level 55) : signature_scope.
Notation " R ==> R' " := (@respectful _ _ (R%signature) (R'%signature))
(right associativity, at level 55) : signature_scope.
Notation " R --> R' " := (@respectful _ _ (inverse (R%signature)) (R'%signature))
(right associativity, at level 55) : signature_scope.
Arguments Scope respectful [type_scope type_scope signature_scope signature_scope].
Open Local Scope signature_scope.
(** Pointwise lifting is just respect with leibniz equality on the left. *)
Definition pointwise_relation {A B : Type} (R : relation B) : relation (A -> B) :=
fun f g => forall x : A, R (f x) (g x).
Lemma pointwise_pointwise A B (R : relation B) :
relation_equivalence (pointwise_relation R) (@eq A ==> R).
Proof. intros. split. simpl_relation. firstorder. Qed.
(** We can build a PER on the Coq function space if we have PERs on the domain and
codomain. *)
Hint Unfold Reflexive : core.
Hint Unfold Symmetric : core.
Hint Unfold Transitive : core.
Program Instance respectful_per [ PER A (R : relation A), PER B (R' : relation B) ] :
PER (A -> B) (R ==> R').
Next Obligation.
Proof with auto.
assert(R x0 x0).
transitivity y0... symmetry...
transitivity (y x0)...
Qed.
(** Subrelations induce a morphism on the identity. *)
Instance subrelation_id_morphism [ subrelation A R₁ R₂ ] : Morphism (R₁ ==> R₂) id.
Proof. firstorder. Qed.
(** The subrelation property goes through products as usual. *)
Instance morphisms_subrelation_respectful [ subl : subrelation A R₂ R₁, subr : subrelation B S₁ S₂ ] :
subrelation (R₁ ==> S₁) (R₂ ==> S₂).
Proof. simpl_relation. apply subr. apply H. apply subl. apply H0. Qed.
(** And of course it is reflexive. *)
Instance morphisms_subrelation_refl : ! subrelation A R R | 10.
Proof. simpl_relation. Qed.
(** [Morphism] is itself a covariant morphism for [subrelation]. *)
Lemma subrelation_morphism [ mor : Morphism A R₁ m, unc : Unconvertible (relation A) R₁ R₂,
sub : subrelation A R₁ R₂ ] : Morphism R₂ m.
Proof.
intros. apply sub. apply mor.
Qed.
Instance morphism_subrelation_morphism :
Morphism (subrelation ++> @eq _ ==> impl) (@Morphism A).
Proof. reduce. subst. firstorder. Qed.
(** We use an external tactic to manage the application of subrelation, which is otherwise
always applicable. We allow its use only once per branch. *)
Inductive subrelation_done : Prop := did_subrelation : subrelation_done.
Inductive normalization_done : Prop := did_normalization.
Ltac subrelation_tac :=
match goal with
| [ _ : subrelation_done |- _ ] => fail 1
| [ |- @Morphism _ _ _ ] => let H := fresh "H" in
set(H:=did_subrelation) ; eapply @subrelation_morphism
end.
Hint Extern 5 (@Morphism _ _ _) => subrelation_tac : typeclass_instances.
(** Essential subrelation instances for [iff], [impl] and [pointwise_relation]. *)
Instance iff_impl_subrelation : subrelation iff impl.
Proof. firstorder. Qed.
Instance iff_inverse_impl_subrelation : subrelation iff (inverse impl).
Proof. firstorder. Qed.
Instance pointwise_subrelation [ sub : subrelation A R R' ] :
subrelation (pointwise_relation (A:=B) R) (pointwise_relation R') | 4.
Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed.
(** The complement of a relation conserves its morphisms. *)
Program Instance complement_morphism
[ mR : Morphism (A -> A -> Prop) (RA ==> RA ==> iff) R ] :
Morphism (RA ==> RA ==> iff) (complement R).
Next Obligation.
Proof.
unfold complement.
pose (mR x y H x0 y0 H0).
intuition.
Qed.
(** The [inverse] too, actually the [flip] instance is a bit more general. *)
Program Instance flip_morphism
[ mor : Morphism (A -> B -> C) (RA ==> RB ==> RC) f ] :
Morphism (RB ==> RA ==> RC) (flip f).
Next Obligation.
Proof.
apply mor ; auto.
Qed.
(** Every Transitive relation gives rise to a binary morphism on [impl],
contravariant in the first argument, covariant in the second. *)
Program Instance trans_contra_co_morphism
[ Transitive A R ] : Morphism (R --> R ++> impl) R.
Next Obligation.
Proof with auto.
transitivity x...
transitivity x0...
Qed.
(** Morphism declarations for partial applications. *)
Program Instance trans_contra_inv_impl_morphism
[ Transitive A R ] : Morphism (R --> inverse impl) (R x) | 3.
Next Obligation.
Proof with auto.
transitivity y...
Qed.
Program Instance trans_co_impl_morphism
[ Transitive A R ] : Morphism (R ==> impl) (R x) | 3.
Next Obligation.
Proof with auto.
transitivity x0...
Qed.
Program Instance trans_sym_co_inv_impl_morphism
[ PER A R ] : Morphism (R ==> inverse impl) (R x) | 2.
Next Obligation.
Proof with auto.
transitivity y... symmetry...
Qed.
Program Instance trans_sym_contra_impl_morphism
[ PER A R ] : Morphism (R --> impl) (R x) | 2.
Next Obligation.
Proof with auto.
transitivity x0... symmetry...
Qed.
Program Instance per_partial_app_morphism
[ PER A R ] : Morphism (R ==> iff) (R x) | 1.
Next Obligation.
Proof with auto.
split. intros ; transitivity x0...
intros.
transitivity y...
symmetry...
Qed.
(** Every Transitive relation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof
to get an [R y z] goal. *)
Program Instance trans_co_eq_inv_impl_morphism
[ Transitive A R ] : Morphism (R ==> (@eq A) ==> inverse impl) R | 2.
Next Obligation.
Proof with auto.
transitivity y...
Qed.
(** Every Symmetric and Transitive relation gives rise to an equivariant morphism. *)
Program Instance PER_morphism [ PER A R ] : Morphism (R ==> R ==> iff) R | 1.
Next Obligation.
Proof with auto.
split ; intros.
transitivity x0... transitivity x... symmetry...
transitivity y... transitivity y0... symmetry...
Qed.
Lemma symmetric_equiv_inverse [ Symmetric A R ] : relation_equivalence R (flip R).
Proof. firstorder. Qed.
Program Instance compose_morphism A B C R₀ R₁ R₂ :
Morphism ((R₁ ==> R₂) ==> (R₀ ==> R₁) ==> (R₀ ==> R₂)) (@compose A B C).
Next Obligation.
Proof.
simpl_relation.
unfold compose. apply H. apply H0. apply H1.
Qed.
(** Coq functions are morphisms for leibniz equality,
applied only if really needed. *)
Instance reflexive_eq_dom_reflexive (A : Type) [ Reflexive B R' ] :
Reflexive (@Logic.eq A ==> R').
Proof. simpl_relation. Qed.
(** [respectful] is a morphism for relation equivalence. *)
Instance respectful_morphism :
Morphism (relation_equivalence ++> relation_equivalence ++> relation_equivalence) (@respectful A B).
Proof.
reduce.
unfold respectful, relation_equivalence, predicate_equivalence in * ; simpl in *.
split ; intros.
rewrite <- H0.
apply H1.
rewrite H.
assumption.
rewrite H0.
apply H1.
rewrite <- H.
assumption.
Qed.
(** Every element in the carrier of a reflexive relation is a morphism for this relation.
We use a proxy class for this case which is used internally to discharge reflexivity constraints.
The [Reflexive] instance will almost always be used, but it won't apply in general to any kind of
[Morphism (A -> B) _ _] goal, making proof-search much slower. A cleaner solution would be to be able
to set different priorities in different hint bases and select a particular hint database for
resolution of a type class constraint.*)
Class MorphismProxy A (R : relation A) (m : A) : Prop :=
respect_proxy : R m m.
Instance reflexive_morphism_proxy
[ Reflexive A R ] (x : A) : MorphismProxy R x | 1.
Proof. firstorder. Qed.
Instance morphism_morphism_proxy
[ Morphism A R x ] : MorphismProxy R x | 2.
Proof. firstorder. Qed.
(** [R] is Reflexive, hence we can build the needed proof. *)
Lemma Reflexive_partial_app_morphism [ Morphism (A -> B) (R ==> R') m, MorphismProxy A R x ] :
Morphism R' (m x).
Proof. simpl_relation. Qed.
Class Params {A : Type} (of : A) (arity : nat).
Class PartialApplication.
Ltac partial_application_tactic :=
let rec do_partial_apps H m :=
match m with
| ?m' ?x => eapply @Reflexive_partial_app_morphism ; [do_partial_apps H m'|clear H]
| _ => idtac
end
in
let rec do_partial H ar m :=
match ar with
| 0 => do_partial_apps H m
| S ?n' =>
match m with
?m' ?x => do_partial H n' m'
end
end
in
let on_morphism m :=
let m' := fresh in head_of_constr m' m ;
let n := fresh in evar (n:nat) ;
let v := eval compute in n in clear n ;
let H := fresh in
assert(H:Params m' v) by typeclasses eauto ;
let v' := eval compute in v in
do_partial H v' m
in
match goal with
| [ _ : subrelation_done |- _ ] => fail 1
| [ _ : normalization_done |- _ ] => fail 1
| [ _ : @Params _ _ _ |- _ ] => fail 1
| [ |- @Morphism ?T _ (?m ?x) ] =>
match goal with
| [ _ : PartialApplication |- _ ] =>
eapply @Reflexive_partial_app_morphism
| _ =>
on_morphism (m x) ||
(eapply @Reflexive_partial_app_morphism ;
[ pose Build_PartialApplication | idtac ])
end
end.
Section PartialAppTest.
Instance and_ar : Params and 0.
Goal Morphism (iff) (and True True).
partial_application_tactic.
Admitted.
Goal Morphism (iff) (or True True).
partial_application_tactic.
partial_application_tactic.
Admitted.
Goal Morphism (iff ==> iff) (iff True).
partial_application_tactic.
(*partial_application_tactic. *)
Admitted.
End PartialAppTest.
Hint Extern 4 (@Morphism _ _ _) => partial_application_tactic : typeclass_instances.
Lemma inverse_respectful : forall (A : Type) (R : relation A) (B : Type) (R' : relation B),
relation_equivalence (inverse (R ==> R')) (inverse R ==> inverse R').
Proof.
intros.
unfold flip, respectful.
split ; intros ; intuition.
Qed.
(** Special-purpose class to do normalization of signatures w.r.t. inverse. *)
Class (A : Type) => Normalizes (m : relation A) (m' : relation A) : Prop :=
normalizes : relation_equivalence m m'.
Instance inverse_respectful_norm :
! Normalizes (A -> B) (inverse R ==> inverse R') (inverse (R ==> R')) .
Proof. firstorder. Qed.
(* If not an inverse on the left, do a double inverse. *)
Instance not_inverse_respectful_norm :
! Normalizes (A -> B) (R ==> inverse R') (inverse (inverse R ==> R')) | 4.
Proof. firstorder. Qed.
Instance inverse_respectful_rec_norm [ Normalizes B R' (inverse R'') ] :
! Normalizes (A -> B) (inverse R ==> R') (inverse (R ==> R'')).
Proof. red ; intros.
assert(r:=normalizes).
setoid_rewrite r.
setoid_rewrite inverse_respectful.
reflexivity.
Qed.
(** Once we have normalized, we will apply this instance to simplify the problem. *)
Definition morphism_inverse_morphism [ mor : Morphism A R m ] : Morphism (inverse R) m := mor.
Ltac morphism_inverse :=
match goal with
[ |- @Morphism _ (flip _) _ ] => eapply @morphism_inverse_morphism
end.
Hint Extern 2 (@Morphism _ _ _) => morphism_inverse : typeclass_instances.
(** Bootstrap !!! *)
Instance morphism_morphism : Morphism (relation_equivalence ==> @eq _ ==> iff) (@Morphism A).
Proof.
simpl_relation.
reduce in H.
split ; red ; intros.
setoid_rewrite <- H.
apply H0.
setoid_rewrite H.
apply H0.
Qed.
Lemma morphism_releq_morphism [ Normalizes A R R', Morphism _ R' m ] : Morphism R m.
Proof.
intros.
pose respect as r.
pose normalizes as norm.
setoid_rewrite norm.
assumption.
Qed.
Ltac morphism_normalization :=
match goal with
| [ _ : subrelation_done |- _ ] => fail 1
| [ _ : normalization_done |- _ ] => fail 1
| [ |- @Morphism _ _ _ ] => let H := fresh "H" in
set(H:=did_normalization) ; eapply @morphism_releq_morphism
end.
Hint Extern 6 (@Morphism _ _ _) => morphism_normalization : typeclass_instances.
(** Every reflexive relation gives rise to a morphism, only for immediately solving goals without variables. *)
Lemma reflexive_morphism [ Reflexive A R ] (x : A)
: Morphism R x.
Proof. firstorder. Qed.
Ltac morphism_reflexive :=
match goal with
| [ _ : normalization_done |- _ ] => fail 1
| [ _ : subrelation_done |- _ ] => fail 1
| [ |- @Morphism _ _ _ ] => eapply @reflexive_morphism
end.
Hint Extern 7 (@Morphism _ _ _) => morphism_reflexive : typeclass_instances.
|