blob: 49fc4f892db3fc3fd7cd408abce66cea9c005155 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Functional morphisms.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
91405 Orsay, France *)
(* $Id: Functions.v 10739 2008-04-01 14:45:20Z herbelin $ *)
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Classes.Morphisms.
Set Implicit Arguments.
Unset Strict Implicit.
Class [ m : Morphism (A -> B) (RA ++> RB) f ] => Injective : Prop :=
injective : forall x y : A, RB (f x) (f y) -> RA x y.
Class [ m : Morphism (A -> B) (RA ++> RB) f ] => Surjective : Prop :=
surjective : forall y, exists x : A, RB y (f x).
Definition Bijective [ m : Morphism (A -> B) (RA ++> RB) (f : A -> B) ] :=
Injective m /\ Surjective m.
Class [ m : Morphism (A -> B) (eqA ++> eqB) ] => MonoMorphism :=
monic :> Injective m.
Class [ m : Morphism (A -> B) (eqA ++> eqB) ] => EpiMorphism :=
epic :> Surjective m.
Class [ m : Morphism (A -> B) (eqA ++> eqB) ] => IsoMorphism :=
monomorphism :> MonoMorphism m ; epimorphism :> EpiMorphism m.
Class [ m : Morphism (A -> A) (eqA ++> eqA), ! IsoMorphism m ] => AutoMorphism.
|