1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
(** Bit vectors. Contribution by Jean Duprat (ENS Lyon). *)
Require Export Bool.
Require Export Sumbool.
Require Import Arith.
Open Local Scope nat_scope.
(**
We build bit vectors in the spirit of List.v.
The size of the vector is a parameter which is too important
to be accessible only via function "length".
The first idea is to build a record with both the list and the length.
Unfortunately, this a posteriori verification leads to
numerous lemmas for handling lengths.
The second idea is to use a dependent type in which the length
is a building parameter. This leads to structural induction that
are slightly more complex and in some cases we will use a proof-term
as definition, since the type inference mechanism for pattern-matching
is sometimes weaker that the one implemented for elimination tactiques.
*)
Section VECTORS.
(**
A vector is a list of size n whose elements belongs to a set A.
If the size is non-zero, we can extract the first component and the
rest of the vector, as well as the last component, or adding or
removing a component (carry) or repeating the last component at the
end of the vector.
We can also truncate the vector and remove its p last components or
reciprocally extend the vector by concatenation.
A unary function over A generates a function on vectors of size n by
applying f pointwise.
A binary function over A generates a function on pairs of vectors of
size n by applying f pointwise.
*)
Variable A : Type.
Inductive vector : nat -> Type :=
| Vnil : vector 0
| Vcons : forall (a:A) (n:nat), vector n -> vector (S n).
Definition Vhead (n:nat) (v:vector (S n)) :=
match v with
| Vcons a _ _ => a
end.
Definition Vtail (n:nat) (v:vector (S n)) :=
match v with
| Vcons _ _ v => v
end.
Definition Vlast : forall n:nat, vector (S n) -> A.
Proof.
induction n as [| n f]; intro v.
inversion v.
exact a.
inversion v as [| n0 a H0 H1].
exact (f H0).
Defined.
Fixpoint Vconst (a:A) (n:nat) :=
match n return vector n with
| O => Vnil
| S n => Vcons a _ (Vconst a n)
end.
(** Shifting and truncating *)
Lemma Vshiftout : forall n:nat, vector (S n) -> vector n.
Proof.
induction n as [| n f]; intro v.
exact Vnil.
inversion v as [| a n0 H0 H1].
exact (Vcons a n (f H0)).
Defined.
Lemma Vshiftin : forall n:nat, A -> vector n -> vector (S n).
Proof.
induction n as [| n f]; intros a v.
exact (Vcons a 0 v).
inversion v as [| a0 n0 H0 H1 ].
exact (Vcons a (S n) (f a H0)).
Defined.
Lemma Vshiftrepeat : forall n:nat, vector (S n) -> vector (S (S n)).
Proof.
induction n as [| n f]; intro v.
inversion v.
exact (Vcons a 1 v).
inversion v as [| a n0 H0 H1 ].
exact (Vcons a (S (S n)) (f H0)).
Defined.
Lemma Vtrunc : forall n p:nat, n > p -> vector n -> vector (n - p).
Proof.
induction p as [| p f]; intros H v.
rewrite <- minus_n_O.
exact v.
apply (Vshiftout (n - S p)).
rewrite minus_Sn_m.
apply f.
auto with *.
exact v.
auto with *.
Defined.
(** Concatenation of two vectors *)
Fixpoint Vextend n p (v:vector n) (w:vector p) : vector (n+p) :=
match v with
| Vnil => w
| Vcons a n' v' => Vcons a (n'+p) (Vextend n' p v' w)
end.
(** Uniform application on the arguments of the vector *)
Variable f : A -> A.
Fixpoint Vunary n (v:vector n) : vector n :=
match v with
| Vnil => Vnil
| Vcons a n' v' => Vcons (f a) n' (Vunary n' v')
end.
Variable g : A -> A -> A.
Lemma Vbinary : forall n:nat, vector n -> vector n -> vector n.
Proof.
induction n as [| n h]; intros v v0.
exact Vnil.
inversion v as [| a n0 H0 H1]; inversion v0 as [| a0 n1 H2 H3].
exact (Vcons (g a a0) n (h H0 H2)).
Defined.
(** Eta-expansion of a vector *)
Definition Vid n : vector n -> vector n :=
match n with
| O => fun _ => Vnil
| _ => fun v => Vcons (Vhead _ v) _ (Vtail _ v)
end.
Lemma Vid_eq : forall (n:nat) (v:vector n), v = Vid n v.
Proof.
destruct v; auto.
Qed.
Lemma VSn_eq :
forall (n : nat) (v : vector (S n)), v = Vcons (Vhead _ v) _ (Vtail _ v).
Proof.
intros.
exact (Vid_eq _ v).
Qed.
Lemma V0_eq : forall (v : vector 0), v = Vnil.
Proof.
intros.
exact (Vid_eq _ v).
Qed.
End VECTORS.
(* suppressed: incompatible with Coq-Art book
Implicit Arguments Vnil [A].
Implicit Arguments Vcons [A n].
*)
Section BOOLEAN_VECTORS.
(**
A bit vector is a vector over booleans.
Notice that the LEAST significant bit comes first (little-endian representation).
We extract the least significant bit (head) and the rest of the vector (tail).
We compute bitwise operation on vector: negation, and, or, xor.
We compute size-preserving shifts: to the left (towards most significant bits,
we hence use Vshiftout) and to the right (towards least significant bits,
we use Vshiftin) by inserting a 'carry' bit (logical shift) or by repeating
the most significant bit (arithmetical shift).
NOTA BENE: all shift operations expect predecessor of size as parameter
(they only work on non-empty vectors).
*)
Definition Bvector := vector bool.
Definition Bnil := @Vnil bool.
Definition Bcons := @Vcons bool.
Definition Bvect_true := Vconst bool true.
Definition Bvect_false := Vconst bool false.
Definition Blow := Vhead bool.
Definition Bhigh := Vtail bool.
Definition Bsign := Vlast bool.
Definition Bneg := Vunary bool negb.
Definition BVand := Vbinary bool andb.
Definition BVor := Vbinary bool orb.
Definition BVxor := Vbinary bool xorb.
Definition BshiftL (n:nat) (bv:Bvector (S n)) (carry:bool) :=
Bcons carry n (Vshiftout bool n bv).
Definition BshiftRl (n:nat) (bv:Bvector (S n)) (carry:bool) :=
Bhigh (S n) (Vshiftin bool (S n) carry bv).
Definition BshiftRa (n:nat) (bv:Bvector (S n)) :=
Bhigh (S n) (Vshiftrepeat bool n bv).
Fixpoint BshiftL_iter (n:nat) (bv:Bvector (S n)) (p:nat) : Bvector (S n) :=
match p with
| O => bv
| S p' => BshiftL n (BshiftL_iter n bv p') false
end.
Fixpoint BshiftRl_iter (n:nat) (bv:Bvector (S n)) (p:nat) : Bvector (S n) :=
match p with
| O => bv
| S p' => BshiftRl n (BshiftRl_iter n bv p') false
end.
Fixpoint BshiftRa_iter (n:nat) (bv:Bvector (S n)) (p:nat) : Bvector (S n) :=
match p with
| O => bv
| S p' => BshiftRa n (BshiftRa_iter n bv p')
end.
End BOOLEAN_VECTORS.
|