blob: d40e56bf64861946129f7d78ecef55fa3850b2df (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Cuihtlauac Alvarado - octobre 2000 *)
(** Properties of a boolean equality *)
Require Export Bool.
Section Bool_eq_dec.
Variable A : Set.
Variable beq : A -> A -> bool.
Variable beq_refl : forall x:A, true = beq x x.
Variable beq_eq : forall x y:A, true = beq x y -> x = y.
Definition beq_eq_true : forall x y:A, x = y -> true = beq x y.
Proof.
intros x y H.
case H.
apply beq_refl.
Defined.
Definition beq_eq_not_false : forall x y:A, x = y -> false <> beq x y.
Proof.
intros x y e.
rewrite <- beq_eq_true; trivial; discriminate.
Defined.
Definition beq_false_not_eq : forall x y:A, false = beq x y -> x <> y.
Proof.
exact
(fun (x y:A) (H:false = beq x y) (e:x = y) => beq_eq_not_false x y e H).
Defined.
Definition exists_beq_eq : forall x y:A, {b : bool | b = beq x y}.
Proof.
intros.
exists (beq x y).
constructor.
Defined.
Definition not_eq_false_beq : forall x y:A, x <> y -> false = beq x y.
Proof.
intros x y H.
symmetry in |- *.
apply not_true_is_false.
intro.
apply H.
apply beq_eq.
symmetry in |- *.
assumption.
Defined.
Definition eq_dec : forall x y:A, {x = y} + {x <> y}.
Proof.
intros x y; case (exists_beq_eq x y).
intros b; case b; intro H.
left; apply beq_eq; assumption.
right; apply beq_false_not_eq; assumption.
Defined.
End Bool_eq_dec.
|