blob: 6e312e4fde3bed01411cd38ff1919555e6260f1a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Properties of subtraction between natural numbers.
This file is mostly OBSOLETE now, see module [PeanoNat.Nat] instead.
[minus] is now an alias for [Nat.sub], which is defined in [Init/Nat.v] as:
<<
Fixpoint sub (n m:nat) : nat :=
match n, m with
| S k, S l => k - l
| _, _ => n
end
where "n - m" := (sub n m) : nat_scope.
>>
*)
Require Import PeanoNat Lt Le.
Local Open Scope nat_scope.
(** * 0 is right neutral *)
Lemma minus_n_O n : n = n - 0.
Proof.
symmetry. apply Nat.sub_0_r.
Qed.
(** * Permutation with successor *)
Lemma minus_Sn_m n m : m <= n -> S (n - m) = S n - m.
Proof.
intros. symmetry. now apply Nat.sub_succ_l.
Qed.
Theorem pred_of_minus n : pred n = n - 1.
Proof.
symmetry. apply Nat.sub_1_r.
Qed.
(** * Diagonal *)
Notation minus_diag := Nat.sub_diag (compat "8.4"). (* n - n = 0 *)
Lemma minus_diag_reverse n : 0 = n - n.
Proof.
symmetry. apply Nat.sub_diag.
Qed.
Notation minus_n_n := minus_diag_reverse.
(** * Simplification *)
Lemma minus_plus_simpl_l_reverse n m p : n - m = p + n - (p + m).
Proof.
now rewrite Nat.sub_add_distr, Nat.add_comm, Nat.add_sub.
Qed.
(** * Relation with plus *)
Lemma plus_minus n m p : n = m + p -> p = n - m.
Proof.
symmetry. now apply Nat.add_sub_eq_l.
Qed.
Lemma minus_plus n m : n + m - n = m.
Proof.
rewrite Nat.add_comm. apply Nat.add_sub.
Qed.
Lemma le_plus_minus_r n m : n <= m -> n + (m - n) = m.
Proof.
rewrite Nat.add_comm. apply Nat.sub_add.
Qed.
Lemma le_plus_minus n m : n <= m -> m = n + (m - n).
Proof.
intros. symmetry. rewrite Nat.add_comm. now apply Nat.sub_add.
Qed.
(** * Relation with order *)
Notation minus_le_compat_r :=
Nat.sub_le_mono_r (compat "8.4"). (* n <= m -> n - p <= m - p. *)
Notation minus_le_compat_l :=
Nat.sub_le_mono_l (compat "8.4"). (* n <= m -> p - m <= p - n. *)
Notation le_minus := Nat.le_sub_l (compat "8.4"). (* n - m <= n *)
Notation lt_minus := Nat.sub_lt (compat "8.4"). (* m <= n -> 0 < m -> n-m < n *)
Lemma lt_O_minus_lt n m : 0 < n - m -> m < n.
Proof.
apply Nat.lt_add_lt_sub_r.
Qed.
Theorem not_le_minus_0 n m : ~ m <= n -> n - m = 0.
Proof.
intros. now apply Nat.sub_0_le, Nat.lt_le_incl, Nat.lt_nge.
Qed.
(** * Hints *)
Hint Resolve minus_n_O: arith v62.
Hint Resolve minus_Sn_m: arith v62.
Hint Resolve minus_diag_reverse: arith v62.
Hint Resolve minus_plus_simpl_l_reverse: arith v62.
Hint Immediate plus_minus: arith v62.
Hint Resolve minus_plus: arith v62.
Hint Resolve le_plus_minus: arith v62.
Hint Resolve le_plus_minus_r: arith v62.
Hint Resolve lt_minus: arith v62.
Hint Immediate lt_O_minus_lt: arith v62.
|