summaryrefslogtreecommitdiff
path: root/theories/Arith/Min.v
blob: bcfbe0efefb8357d5f5e69e34afc25a58f06ef8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** THIS FILE IS DEPRECATED. Use [NPeano.Nat] instead. *)

Require Import NPeano.

Open Local Scope nat_scope.
Implicit Types m n p : nat.

Notation min := Peano.min (only parsing).

Definition min_0_l := Nat.min_0_l.
Definition min_0_r := Nat.min_0_r.
Definition succ_min_distr := Nat.succ_min_distr.
Definition plus_min_distr_l := Nat.add_min_distr_l.
Definition plus_min_distr_r := Nat.add_min_distr_r.
Definition min_case_strong := Nat.min_case_strong.
Definition min_spec := Nat.min_spec.
Definition min_dec := Nat.min_dec.
Definition min_case := Nat.min_case.
Definition min_idempotent := Nat.min_id.
Definition min_assoc := Nat.min_assoc.
Definition min_comm := Nat.min_comm.
Definition min_l := Nat.min_l.
Definition min_r := Nat.min_r.
Definition le_min_l := Nat.le_min_l.
Definition le_min_r := Nat.le_min_r.
Definition min_glb_l := Nat.min_glb_l.
Definition min_glb_r := Nat.min_glb_r.
Definition min_glb := Nat.min_glb.

(* begin hide *)
(* Compatibility *)
Notation min_case2 := min_case (only parsing).
Notation min_SS := Nat.succ_min_distr (only parsing).
(* end hide *)