summaryrefslogtreecommitdiff
path: root/theories/Arith/Max.v
blob: 721428e586cb3b2068a23fc1cb1fc8e54d6d9428 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** THIS FILE IS DEPRECATED. Use [NPeano.Nat] instead. *)

Require Import NPeano.

Local Open Scope nat_scope.
Implicit Types m n p : nat.

Notation max := Peano.max (only parsing).

Definition max_0_l := Nat.max_0_l.
Definition max_0_r := Nat.max_0_r.
Definition succ_max_distr := Nat.succ_max_distr.
Definition plus_max_distr_l := Nat.add_max_distr_l.
Definition plus_max_distr_r := Nat.add_max_distr_r.
Definition max_case_strong := Nat.max_case_strong.
Definition max_spec := Nat.max_spec.
Definition max_dec := Nat.max_dec.
Definition max_case := Nat.max_case.
Definition max_idempotent := Nat.max_id.
Definition max_assoc := Nat.max_assoc.
Definition max_comm := Nat.max_comm.
Definition max_l := Nat.max_l.
Definition max_r := Nat.max_r.
Definition le_max_l := Nat.le_max_l.
Definition le_max_r := Nat.le_max_r.
Definition max_lub_l := Nat.max_lub_l.
Definition max_lub_r := Nat.max_lub_r.
Definition max_lub := Nat.max_lub.

(* begin hide *)
(* Compatibility *)
Notation max_case2 := max_case (only parsing).
Notation max_SS := Nat.succ_max_distr (only parsing).
(* end hide *)

Hint Resolve
 Nat.max_l Nat.max_r Nat.le_max_l Nat.le_max_r : arith v62.

Hint Resolve
 Nat.min_l Nat.min_r Nat.le_min_l Nat.le_min_r : arith v62.