1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Nota : this file is OBSOLETE, and left only for compatibility.
Please consider instead predicates [Nat.Even] and [Nat.Odd]
and Boolean functions [Nat.even] and [Nat.odd]. *)
(** Here we define the predicates [even] and [odd] by mutual induction
and we prove the decidability and the exclusion of those predicates.
The main results about parity are proved in the module Div2. *)
Require Import PeanoNat.
Local Open Scope nat_scope.
Implicit Types m n : nat.
(** * Inductive definition of [even] and [odd] *)
Inductive even : nat -> Prop :=
| even_O : even 0
| even_S : forall n, odd n -> even (S n)
with odd : nat -> Prop :=
odd_S : forall n, even n -> odd (S n).
Hint Constructors even: arith.
Hint Constructors odd: arith.
(** * Equivalence with predicates [Nat.Even] and [Nat.odd] *)
Lemma even_equiv : forall n, even n <-> Nat.Even n.
Proof.
fix 1.
destruct n as [|[|n]]; simpl.
- split; [now exists 0 | constructor].
- split.
+ inversion_clear 1. inversion_clear H0.
+ now rewrite <- Nat.even_spec.
- rewrite Nat.Even_succ_succ, <- even_equiv.
split.
+ inversion_clear 1. now inversion_clear H0.
+ now do 2 constructor.
Qed.
Lemma odd_equiv : forall n, odd n <-> Nat.Odd n.
Proof.
fix 1.
destruct n as [|[|n]]; simpl.
- split.
+ inversion_clear 1.
+ now rewrite <- Nat.odd_spec.
- split; [ now exists 0 | do 2 constructor ].
- rewrite Nat.Odd_succ_succ, <- odd_equiv.
split.
+ inversion_clear 1. now inversion_clear H0.
+ now do 2 constructor.
Qed.
(** Basic facts *)
Lemma even_or_odd n : even n \/ odd n.
Proof.
induction n.
- auto with arith.
- elim IHn; auto with arith.
Qed.
Lemma even_odd_dec n : {even n} + {odd n}.
Proof.
induction n.
- auto with arith.
- elim IHn; auto with arith.
Defined.
Lemma not_even_and_odd n : even n -> odd n -> False.
Proof.
induction n.
- intros Ev Od. inversion Od.
- intros Ev Od. inversion Ev. inversion Od. auto with arith.
Qed.
(** * Facts about [even] & [odd] wrt. [plus] *)
Ltac parity2bool :=
rewrite ?even_equiv, ?odd_equiv, <- ?Nat.even_spec, <- ?Nat.odd_spec.
Ltac parity_binop_spec :=
rewrite ?Nat.even_add, ?Nat.odd_add, ?Nat.even_mul, ?Nat.odd_mul.
Ltac parity_binop :=
parity2bool; parity_binop_spec; unfold Nat.odd;
do 2 destruct Nat.even; simpl; tauto.
Lemma even_plus_split n m :
even (n + m) -> even n /\ even m \/ odd n /\ odd m.
Proof. parity_binop. Qed.
Lemma odd_plus_split n m :
odd (n + m) -> odd n /\ even m \/ even n /\ odd m.
Proof. parity_binop. Qed.
Lemma even_even_plus n m : even n -> even m -> even (n + m).
Proof. parity_binop. Qed.
Lemma odd_plus_l n m : odd n -> even m -> odd (n + m).
Proof. parity_binop. Qed.
Lemma odd_plus_r n m : even n -> odd m -> odd (n + m).
Proof. parity_binop. Qed.
Lemma odd_even_plus n m : odd n -> odd m -> even (n + m).
Proof. parity_binop. Qed.
Lemma even_plus_aux n m :
(odd (n + m) <-> odd n /\ even m \/ even n /\ odd m) /\
(even (n + m) <-> even n /\ even m \/ odd n /\ odd m).
Proof. parity_binop. Qed.
Lemma even_plus_even_inv_r n m : even (n + m) -> even n -> even m.
Proof. parity_binop. Qed.
Lemma even_plus_even_inv_l n m : even (n + m) -> even m -> even n.
Proof. parity_binop. Qed.
Lemma even_plus_odd_inv_r n m : even (n + m) -> odd n -> odd m.
Proof. parity_binop. Qed.
Lemma even_plus_odd_inv_l n m : even (n + m) -> odd m -> odd n.
Proof. parity_binop. Qed.
Lemma odd_plus_even_inv_l n m : odd (n + m) -> odd m -> even n.
Proof. parity_binop. Qed.
Lemma odd_plus_even_inv_r n m : odd (n + m) -> odd n -> even m.
Proof. parity_binop. Qed.
Lemma odd_plus_odd_inv_l n m : odd (n + m) -> even m -> odd n.
Proof. parity_binop. Qed.
Lemma odd_plus_odd_inv_r n m : odd (n + m) -> even n -> odd m.
Proof. parity_binop. Qed.
(** * Facts about [even] and [odd] wrt. [mult] *)
Lemma even_mult_aux n m :
(odd (n * m) <-> odd n /\ odd m) /\ (even (n * m) <-> even n \/ even m).
Proof. parity_binop. Qed.
Lemma even_mult_l n m : even n -> even (n * m).
Proof. parity_binop. Qed.
Lemma even_mult_r n m : even m -> even (n * m).
Proof. parity_binop. Qed.
Lemma even_mult_inv_r n m : even (n * m) -> odd n -> even m.
Proof. parity_binop. Qed.
Lemma even_mult_inv_l n m : even (n * m) -> odd m -> even n.
Proof. parity_binop. Qed.
Lemma odd_mult n m : odd n -> odd m -> odd (n * m).
Proof. parity_binop. Qed.
Lemma odd_mult_inv_l n m : odd (n * m) -> odd n.
Proof. parity_binop. Qed.
Lemma odd_mult_inv_r n m : odd (n * m) -> odd m.
Proof. parity_binop. Qed.
Hint Resolve
even_even_plus odd_even_plus odd_plus_l odd_plus_r
even_mult_l even_mult_r even_mult_l even_mult_r odd_mult : arith.
|