blob: 3d6f1af55098eb5d87b6d392b4095d9851bae2fb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Euclid.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import Mult.
Require Import Compare_dec.
Require Import Wf_nat.
Open Local Scope nat_scope.
Implicit Types a b n q r : nat.
Inductive diveucl a b : Set :=
divex : forall q r, b > r -> a = q * b + r -> diveucl a b.
Lemma eucl_dev : forall n, n > 0 -> forall m:nat, diveucl m n.
Proof.
intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q r g e.
apply divex with (S q) r; simpl in |- *; auto with arith.
elim plus_assoc.
elim e; auto with arith.
intros gtbn.
apply divex with 0 n; simpl in |- *; auto with arith.
Qed.
Lemma quotient :
forall n,
n > 0 ->
forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}.
Proof.
intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros q Hq; exists (S q).
elim Hq; intros r Hr.
exists r; simpl in |- *; elim Hr; intros.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
exists 0; exists n; simpl in |- *; auto with arith.
Qed.
Lemma modulo :
forall n,
n > 0 ->
forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}.
Proof.
intros b H a; pattern a in |- *; apply gt_wf_rec; intros n H0.
elim (le_gt_dec b n).
intro lebn.
elim (H0 (n - b)); auto with arith.
intros r Hr; exists r.
elim Hr; intros q Hq.
elim Hq; intros; exists (S q); simpl in |- *.
elim plus_assoc.
elim H1; auto with arith.
intros gtbn.
exists n; exists 0; simpl in |- *; auto with arith.
Qed.
|