1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: EqNat.v 13323 2010-07-24 15:57:30Z herbelin $ i*)
(** Equality on natural numbers *)
Open Local Scope nat_scope.
Implicit Types m n x y : nat.
(** * Propositional equality *)
Fixpoint eq_nat n m : Prop :=
match n, m with
| O, O => True
| O, S _ => False
| S _, O => False
| S n1, S m1 => eq_nat n1 m1
end.
Theorem eq_nat_refl : forall n, eq_nat n n.
induction n; simpl in |- *; auto.
Qed.
Hint Resolve eq_nat_refl: arith v62.
(** [eq] restricted to [nat] and [eq_nat] are equivalent *)
Lemma eq_eq_nat : forall n m, n = m -> eq_nat n m.
induction 1; trivial with arith.
Qed.
Hint Immediate eq_eq_nat: arith v62.
Lemma eq_nat_eq : forall n m, eq_nat n m -> n = m.
induction n; induction m; simpl in |- *; contradiction || auto with arith.
Qed.
Hint Immediate eq_nat_eq: arith v62.
Theorem eq_nat_is_eq : forall n m, eq_nat n m <-> n = m.
Proof.
split; auto with arith.
Qed.
Theorem eq_nat_elim :
forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m.
Proof.
intros; replace m with n; auto with arith.
Qed.
Theorem eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}.
Proof.
induction n.
destruct m as [| n].
auto with arith.
intros; right; red in |- *; trivial with arith.
destruct m as [| n0].
right; red in |- *; auto with arith.
intros.
simpl in |- *.
apply IHn.
Defined.
(** * Boolean equality on [nat] *)
Fixpoint beq_nat n m : bool :=
match n, m with
| O, O => true
| O, S _ => false
| S _, O => false
| S n1, S m1 => beq_nat n1 m1
end.
Lemma beq_nat_refl : forall n, true = beq_nat n n.
Proof.
intro x; induction x; simpl in |- *; auto.
Qed.
Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y.
Proof.
double induction x y; simpl in |- *.
reflexivity.
intros n H1 H2. discriminate H2.
intros n H1 H2. discriminate H2.
intros n H1 z H2 H3. case (H2 _ H3). reflexivity.
Defined.
Lemma beq_nat_true : forall x y, beq_nat x y = true -> x=y.
Proof.
induction x; destruct y; simpl; auto; intros; discriminate.
Qed.
Lemma beq_nat_false : forall x y, beq_nat x y = false -> x<>y.
Proof.
induction x; destruct y; simpl; auto; intros; discriminate.
Qed.
Lemma beq_nat_true_iff : forall x y, beq_nat x y = true <-> x=y.
Proof.
split. apply beq_nat_true.
intros; subst; symmetry; apply beq_nat_refl.
Qed.
Lemma beq_nat_false_iff : forall x y, beq_nat x y = false <-> x<>y.
Proof.
intros x y.
split. apply beq_nat_false.
generalize (beq_nat_true_iff x y).
destruct beq_nat; auto.
intros IFF NEQ. elim NEQ. apply IFF; auto.
Qed.
|