1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: EqNat.v,v 1.14.2.1 2004/07/16 19:31:00 herbelin Exp $ i*)
(** Equality on natural numbers *)
Open Local Scope nat_scope.
Implicit Types m n x y : nat.
Fixpoint eq_nat n m {struct n} : Prop :=
match n, m with
| O, O => True
| O, S _ => False
| S _, O => False
| S n1, S m1 => eq_nat n1 m1
end.
Theorem eq_nat_refl : forall n, eq_nat n n.
induction n; simpl in |- *; auto.
Qed.
Hint Resolve eq_nat_refl: arith v62.
Theorem eq_eq_nat : forall n m, n = m -> eq_nat n m.
induction 1; trivial with arith.
Qed.
Hint Immediate eq_eq_nat: arith v62.
Theorem eq_nat_eq : forall n m, eq_nat n m -> n = m.
induction n; induction m; simpl in |- *; contradiction || auto with arith.
Qed.
Hint Immediate eq_nat_eq: arith v62.
Theorem eq_nat_elim :
forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m.
intros; replace m with n; auto with arith.
Qed.
Theorem eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}.
induction n.
destruct m as [| n].
auto with arith.
intros; right; red in |- *; trivial with arith.
destruct m as [| n0].
right; red in |- *; auto with arith.
intros.
simpl in |- *.
apply IHn.
Defined.
Fixpoint beq_nat n m {struct n} : bool :=
match n, m with
| O, O => true
| O, S _ => false
| S _, O => false
| S n1, S m1 => beq_nat n1 m1
end.
Lemma beq_nat_refl : forall n, true = beq_nat n n.
Proof.
intro x; induction x; simpl in |- *; auto.
Qed.
Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y.
Proof.
double induction x y; simpl in |- *.
reflexivity.
intros; discriminate H0.
intros; discriminate H0.
intros; case (H0 _ H1); reflexivity.
Defined.
|