1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id$ i*)
Require Import Lt.
Require Import Plus.
Require Import Compare_dec.
Require Import Even.
Open Local Scope nat_scope.
Implicit Type n : nat.
(** Here we define [n/2] and prove some of its properties *)
Fixpoint div2 n : nat :=
match n with
| O => 0
| S O => 0
| S (S n') => S (div2 n')
end.
(** Since [div2] is recursively defined on [0], [1] and [(S (S n))], it is
useful to prove the corresponding induction principle *)
Lemma ind_0_1_SS :
forall P:nat -> Prop,
P 0 -> P 1 -> (forall n, P n -> P (S (S n))) -> forall n, P n.
Proof.
intros P H0 H1 Hn.
cut (forall n, P n /\ P (S n)).
intros H'n n. elim (H'n n). auto with arith.
induction n. auto with arith.
intros. elim IHn; auto with arith.
Qed.
(** [0 <n => n/2 < n] *)
Lemma lt_div2 : forall n, 0 < n -> div2 n < n.
Proof.
intro n. pattern n in |- *. apply ind_0_1_SS.
(* n = 0 *)
inversion 1.
(* n=1 *)
simpl; trivial.
(* n=S S n' *)
intro n'; case (zerop n').
intro n'_eq_0. rewrite n'_eq_0. auto with arith.
auto with arith.
Qed.
Hint Resolve lt_div2: arith.
(** Properties related to the parity *)
Lemma even_div2 : forall n, even n -> div2 n = div2 (S n)
with odd_div2 : forall n, odd n -> S (div2 n) = div2 (S n).
Proof.
destruct n; intro H.
(* 0 *) trivial.
(* S n *) inversion_clear H. apply odd_div2 in H0 as <-. trivial.
destruct n; intro.
(* 0 *) inversion H.
(* S n *) inversion_clear H. apply even_div2 in H0 as <-. trivial.
Qed.
Lemma div2_even : forall n, div2 n = div2 (S n) -> even n
with div2_odd : forall n, S (div2 n) = div2 (S n) -> odd n.
Proof.
destruct n; intro H.
(* 0 *) constructor.
(* S n *) constructor. apply div2_odd. rewrite H. trivial.
destruct n; intro H.
(* 0 *) discriminate.
(* S n *) constructor. apply div2_even. injection H as <-. trivial.
Qed.
Hint Resolve even_div2 div2_even odd_div2 div2_odd: arith.
Lemma even_odd_div2 :
forall n,
(even n <-> div2 n = div2 (S n)) /\ (odd n <-> S (div2 n) = div2 (S n)).
Proof.
auto decomp using div2_odd, div2_even, odd_div2, even_div2.
Qed.
(** Properties related to the double ([2n]) *)
Definition double n := n + n.
Hint Unfold double: arith.
Lemma double_S : forall n, double (S n) = S (S (double n)).
Proof.
intro. unfold double in |- *. simpl in |- *. auto with arith.
Qed.
Lemma double_plus : forall n (m:nat), double (n + m) = double n + double m.
Proof.
intros m n. unfold double in |- *.
do 2 rewrite plus_assoc_reverse. rewrite (plus_permute n).
reflexivity.
Qed.
Hint Resolve double_S: arith.
Lemma even_odd_double :
forall n,
(even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))).
Proof.
intro n. pattern n in |- *. apply ind_0_1_SS.
(* n = 0 *)
split; split; auto with arith.
intro H. inversion H.
(* n = 1 *)
split; split; auto with arith.
intro H. inversion H. inversion H1.
(* n = (S (S n')) *)
intros. destruct H as ((IH1,IH2),(IH3,IH4)).
split; split.
intro H. inversion H. inversion H1.
simpl in |- *. rewrite (double_S (div2 n0)). auto with arith.
simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
intro H. inversion H. inversion H1.
simpl in |- *. rewrite (double_S (div2 n0)). auto with arith.
simpl in |- *. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
Qed.
(** Specializations *)
Lemma even_double : forall n, even n -> n = double (div2 n).
Proof fun n => proj1 (proj1 (even_odd_double n)).
Lemma double_even : forall n, n = double (div2 n) -> even n.
Proof fun n => proj2 (proj1 (even_odd_double n)).
Lemma odd_double : forall n, odd n -> n = S (double (div2 n)).
Proof fun n => proj1 (proj2 (even_odd_double n)).
Lemma double_odd : forall n, n = S (double (div2 n)) -> odd n.
Proof fun n => proj2 (proj2 (even_odd_double n)).
Hint Resolve even_double double_even odd_double double_odd: arith.
(** Application:
- if [n] is even then there is a [p] such that [n = 2p]
- if [n] is odd then there is a [p] such that [n = 2p+1]
(Immediate: it is [n/2]) *)
Lemma even_2n : forall n, even n -> {p : nat | n = double p}.
Proof.
intros n H. exists (div2 n). auto with arith.
Defined.
Lemma odd_S2n : forall n, odd n -> {p : nat | n = S (double p)}.
Proof.
intros n H. exists (div2 n). auto with arith.
Defined.
(** Doubling before dividing by two brings back to the initial number. *)
Lemma div2_double : forall n:nat, div2 (2*n) = n.
Proof.
induction n.
simpl; auto.
simpl.
replace (n+S(n+0)) with (S (2*n)).
f_equal; auto.
simpl; auto with arith.
Qed.
Lemma div2_double_plus_one : forall n:nat, div2 (S (2*n)) = n.
Proof.
induction n.
simpl; auto.
simpl.
replace (n+S(n+0)) with (S (2*n)).
f_equal; auto.
simpl; auto with arith.
Qed.
|