blob: 976507b565414e5b66a5cb3f917a0a22f2ee7d3f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Le Lt Gt Decidable PeanoNat.
Local Open Scope nat_scope.
Implicit Types m n x y : nat.
Definition zerop n : {n = 0} + {0 < n}.
Proof.
destruct n; auto with arith.
Defined.
Definition lt_eq_lt_dec n m : {n < m} + {n = m} + {m < n}.
Proof.
induction n in m |- *; destruct m; auto with arith.
destruct (IHn m) as [H|H]; auto with arith.
destruct H; auto with arith.
Defined.
Definition gt_eq_gt_dec n m : {m > n} + {n = m} + {n > m}.
Proof.
now apply lt_eq_lt_dec.
Defined.
Definition le_lt_dec n m : {n <= m} + {m < n}.
Proof.
induction n in m |- *.
- left; auto with arith.
- destruct m.
+ right; auto with arith.
+ elim (IHn m); [left|right]; auto with arith.
Defined.
Definition le_le_S_dec n m : {n <= m} + {S m <= n}.
Proof.
exact (le_lt_dec n m).
Defined.
Definition le_ge_dec n m : {n <= m} + {n >= m}.
Proof.
elim (le_lt_dec n m); auto with arith.
Defined.
Definition le_gt_dec n m : {n <= m} + {n > m}.
Proof.
exact (le_lt_dec n m).
Defined.
Definition le_lt_eq_dec n m : n <= m -> {n < m} + {n = m}.
Proof.
intros; destruct (lt_eq_lt_dec n m); auto with arith.
intros; absurd (m < n); auto with arith.
Defined.
Theorem le_dec n m : {n <= m} + {~ n <= m}.
Proof.
destruct (le_gt_dec n m).
- now left.
- right. now apply gt_not_le.
Defined.
Theorem lt_dec n m : {n < m} + {~ n < m}.
Proof.
apply le_dec.
Defined.
Theorem gt_dec n m : {n > m} + {~ n > m}.
Proof.
apply lt_dec.
Defined.
Theorem ge_dec n m : {n >= m} + {~ n >= m}.
Proof.
apply le_dec.
Defined.
(** Proofs of decidability *)
Theorem dec_le n m : decidable (n <= m).
Proof.
apply Nat.le_decidable.
Qed.
Theorem dec_lt n m : decidable (n < m).
Proof.
apply Nat.lt_decidable.
Qed.
Theorem dec_gt n m : decidable (n > m).
Proof.
apply Nat.lt_decidable.
Qed.
Theorem dec_ge n m : decidable (n >= m).
Proof.
apply Nat.le_decidable.
Qed.
Theorem not_eq n m : n <> m -> n < m \/ m < n.
Proof.
apply Nat.lt_gt_cases.
Qed.
Theorem not_le n m : ~ n <= m -> n > m.
Proof.
apply Nat.nle_gt.
Qed.
Theorem not_gt n m : ~ n > m -> n <= m.
Proof.
apply Nat.nlt_ge.
Qed.
Theorem not_ge n m : ~ n >= m -> n < m.
Proof.
apply Nat.nle_gt.
Qed.
Theorem not_lt n m : ~ n < m -> n >= m.
Proof.
apply Nat.nlt_ge.
Qed.
(** A ternary comparison function in the spirit of [Z.compare].
See now [Nat.compare] and its properties.
In scope [nat_scope], the notation for [Nat.compare] is "?=" *)
Notation nat_compare := Nat.compare (compat "8.4").
Notation nat_compare_spec := Nat.compare_spec (compat "8.4").
Notation nat_compare_eq_iff := Nat.compare_eq_iff (compat "8.4").
Notation nat_compare_S := Nat.compare_succ (compat "8.4").
Lemma nat_compare_lt n m : n<m <-> (n ?= m) = Lt.
Proof.
symmetry. apply Nat.compare_lt_iff.
Qed.
Lemma nat_compare_gt n m : n>m <-> (n ?= m) = Gt.
Proof.
symmetry. apply Nat.compare_gt_iff.
Qed.
Lemma nat_compare_le n m : n<=m <-> (n ?= m) <> Gt.
Proof.
symmetry. apply Nat.compare_le_iff.
Qed.
Lemma nat_compare_ge n m : n>=m <-> (n ?= m) <> Lt.
Proof.
symmetry. apply Nat.compare_ge_iff.
Qed.
(** Some projections of the above equivalences. *)
Lemma nat_compare_eq n m : (n ?= m) = Eq -> n = m.
Proof.
apply Nat.compare_eq_iff.
Qed.
Lemma nat_compare_Lt_lt n m : (n ?= m) = Lt -> n<m.
Proof.
apply Nat.compare_lt_iff.
Qed.
Lemma nat_compare_Gt_gt n m : (n ?= m) = Gt -> n>m.
Proof.
apply Nat.compare_gt_iff.
Qed.
(** A previous definition of [nat_compare] in terms of [lt_eq_lt_dec].
The new version avoids the creation of proof parts. *)
Definition nat_compare_alt (n m:nat) :=
match lt_eq_lt_dec n m with
| inleft (left _) => Lt
| inleft (right _) => Eq
| inright _ => Gt
end.
Lemma nat_compare_equiv n m : (n ?= m) = nat_compare_alt n m.
Proof.
unfold nat_compare_alt; destruct lt_eq_lt_dec as [[|]|].
- now apply Nat.compare_lt_iff.
- now apply Nat.compare_eq_iff.
- now apply Nat.compare_gt_iff.
Qed.
(** A boolean version of [le] over [nat].
See now [Nat.leb] and its properties.
In scope [nat_scope], the notation for [Nat.leb] is "<=?" *)
Notation leb := Nat.leb (compat "8.4").
Notation leb_iff := Nat.leb_le (compat "8.4").
Lemma leb_iff_conv m n : (n <=? m) = false <-> m < n.
Proof.
rewrite Nat.leb_nle. apply Nat.nle_gt.
Qed.
Lemma leb_correct m n : m <= n -> (m <=? n) = true.
Proof.
apply Nat.leb_le.
Qed.
Lemma leb_complete m n : (m <=? n) = true -> m <= n.
Proof.
apply Nat.leb_le.
Qed.
Lemma leb_correct_conv m n : m < n -> (n <=? m) = false.
Proof.
apply leb_iff_conv.
Qed.
Lemma leb_complete_conv m n : (n <=? m) = false -> m < n.
Proof.
apply leb_iff_conv.
Qed.
Lemma leb_compare n m : (n <=? m) = true <-> (n ?= m) <> Gt.
Proof.
rewrite Nat.compare_le_iff. apply Nat.leb_le.
Qed.
|