summaryrefslogtreecommitdiff
path: root/test-suite/tactics/TestRefine.v
blob: f752c5bc6f8884c0743f9cd3dc1b08d686902ba5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Petit bench vite fait, mal fait *)

Require Refine.


(************************************************************************)

Lemma essai : (x:nat)x=x.

Refine (([x0:nat]Cases x0 of
    O => ?
  | (S p) => ?
  end) :: (x:nat)x=x).  (* x0=x0 et x0=x0 *)

Restart.

Refine [x0:nat]<[n:nat]n=n>Case x0 of ? [p:nat]? end. (* OK *)

Restart.

Refine [x0:nat]<[n:nat]n=n>Cases x0 of O => ? | (S p) => ? end. (* OK *)

Restart.

(**
Refine [x0:nat]Cases x0 of O => ? | (S p) => ? end. (* cannot be executed *)
**)

Abort.


(************************************************************************)

Lemma T : nat. 

Refine (S ?).

Abort.


(************************************************************************)

Lemma essai2 : (x:nat)x=x.

Refine Fix f{f/1 : (x:nat)x=x := [x:nat]? }.

Restart.

Refine Fix f{f/1 : (x:nat)x=x :=
  [x:nat]<[n:nat](eq nat n n)>Case x of ? [p:nat]? end}.

Restart.

Refine Fix f{f/1 : (x:nat)x=x :=
  [x:nat]<[n:nat]n=n>Cases x of O => ? | (S p) => ? end}.

Restart.

Refine Fix f{f/1 : (x:nat)x=x :=
  [x:nat]<[n:nat](eq nat n n)>Case x of
       ?
       [p:nat](f_equal nat nat S p p ?) end}.

Restart.

Refine Fix f{f/1 : (x:nat)x=x :=
  [x:nat]<[n:nat](eq nat n n)>Cases x of
       O => ?
     | (S p) =>(f_equal nat nat S p p ?) end}.

Abort.


(************************************************************************)

Lemma essai : nat.

Parameter f : nat*nat -> nat -> nat. 

Refine (f ? ([x:nat](? :: nat) O)).

Restart.

Refine (f ? O).

Abort.


(************************************************************************)

Parameter P : nat -> Prop.

Lemma essai : { x:nat | x=(S O) }.

Refine (exist nat ? (S O) ?).  (* ECHEC *)

Restart.

(* mais si on contraint par le but alors ca marche : *)
(* Remarque : on peut toujours faire ça *)
Refine ((exist nat ? (S O) ?) :: { x:nat | x=(S O) }).

Restart.

Refine (exist nat [x:nat](x=(S O)) (S O) ?).

Abort.


(************************************************************************)

Lemma essai : (n:nat){ x:nat | x=(S n) }.

Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end.

Restart.

Refine (([n:nat]Case n of ? [p:nat]? end) :: (n:nat){ x:nat | x=(S n) }).

Restart.

Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end.

Restart.

Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
        [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end}.

Restart.

Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
        [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end}.

Exists (S O). Trivial. 
Elim (f0 p).
Refine [x:nat][h:x=(S p)](exist nat [x:nat]x=(S (S p)) (S x) ?). 
Rewrite h. Auto.
Save.



(* Quelques essais de recurrence bien fondée *)

Require Wf.
Require Wf_nat.

Lemma essai_wf : nat->nat.

Refine [x:nat](well_founded_induction
      	       nat
      	       lt ?
               [_:nat]nat->nat
	       [phi0:nat][w:(phi:nat)(lt phi phi0)->nat->nat](w x ?)
	       x x).
Exact lt_wf.

Abort.


Require Compare_dec.
Require Lt.

Lemma fibo : nat -> nat.
Refine (well_founded_induction
       nat
       lt ?
       [_:nat]nat
       [x0:nat][fib:(x:nat)(lt x x0)->nat]
         Cases (zerop x0) of 
      	   (left _)   => (S O)
      	 | (right h1) => Cases (zerop (pred x0)) of
      	                   (left _)   => (S O)
                         | (right h2) => (plus (fib (pred x0) ?)
      	       	       	       	       	       (fib (pred (pred x0)) ?))
		     end
	 end).
(*********
Refine (well_founded_induction
       nat
       lt ?
       [_:nat]nat
       [x0:nat][fib:(x:nat)(lt x x0)->nat]
         Cases x0 of 
      	   O     => (S O)
      	 | (S O) => (S O)
      	 | (S (S p)) => (plus (fib (pred x0) ?)
      	       	       	      (fib (pred (pred x0)) ?))
	 end).
***********)
Exact lt_wf.
Auto.
Apply lt_trans with m:=(pred x0); Auto.
Save.