1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
Require Import Setoid.
Parameter A : Set.
Axiom eq_dec : forall a b : A, {a = b} + {a <> b}.
Inductive set : Set :=
| Empty : set
| Add : A -> set -> set.
Fixpoint In (a : A) (s : set) {struct s} : Prop :=
match s with
| Empty => False
| Add b s' => a = b \/ In a s'
end.
Definition same (s t : set) : Prop := forall a : A, In a s <-> In a t.
Lemma setoid_set : Setoid_Theory set same.
unfold same in |- *; split ; red.
red in |- *; auto.
red in |- *.
intros.
elim (H a); auto.
intros.
elim (H a); elim (H0 a).
split; auto.
Qed.
Add Setoid set same setoid_set as setsetoid.
Add Morphism In : In_ext.
unfold same in |- *; intros a s t H; elim (H a); auto.
Qed.
Lemma add_aux :
forall s t : set,
same s t -> forall a b : A, In a (Add b s) -> In a (Add b t).
unfold same in |- *; simple induction 2; intros.
rewrite H1.
simpl in |- *; left; reflexivity.
elim (H a).
intros.
simpl in |- *; right.
apply (H2 H1).
Qed.
Add Morphism Add : Add_ext.
split; apply add_aux.
assumption.
rewrite H.
reflexivity.
Qed.
Fixpoint remove (a : A) (s : set) {struct s} : set :=
match s with
| Empty => Empty
| Add b t =>
match eq_dec a b with
| left _ => remove a t
| right _ => Add b (remove a t)
end
end.
Lemma in_rem_not : forall (a : A) (s : set), ~ In a (remove a (Add a Empty)).
intros.
setoid_replace (remove a (Add a Empty)) with Empty.
auto.
unfold same in |- *.
split.
simpl in |- *.
case (eq_dec a a).
intros e ff; elim ff.
intros; absurd (a = a); trivial.
simpl in |- *.
intro H; elim H.
Qed.
Parameter P : set -> Prop.
Parameter P_ext : forall s t : set, same s t -> P s -> P t.
Add Morphism P : P_extt.
intros; split; apply P_ext; (assumption || apply (Seq_sym _ _ setoid_set); assumption).
Qed.
Lemma test_rewrite :
forall (a : A) (s t : set), same s t -> P (Add a s) -> P (Add a t).
intros.
rewrite <- H.
rewrite H.
setoid_rewrite <- H.
setoid_rewrite H.
setoid_rewrite <- H.
trivial.
Qed.
(* Unifying the domain up to delta-conversion (example from emakarov) *)
Definition id: Set -> Set := fun A => A.
Definition rel : forall A : Set, relation (id A) := @eq.
Definition f: forall A : Set, A -> A := fun A x => x.
Add Relation (id A) (rel A) as eq_rel.
Add Morphism (@f A) : f_morph.
Proof.
unfold rel, f. trivial.
Qed.
(* Submitted by Nicolas Tabareau *)
(* Needs unification.ml to support environments with de Bruijn *)
Goal forall
(f : Prop -> Prop)
(Q : (nat -> Prop) -> Prop)
(H : forall (h : nat -> Prop), Q (fun x : nat => f (h x)) <-> True)
(h:nat -> Prop),
Q (fun x : nat => f (Q (fun b : nat => f (h x)))) <-> True.
intros f0 Q H.
setoid_rewrite H.
tauto.
Qed.
|