blob: 8e1a8d1836e9665ecbc3bd602681bfccd404c849 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Test des definitions inductives imbriquees *)
Require Import List.
Inductive X : Set :=
cons1 : list X -> X.
Inductive Y : Set :=
cons2 : list (Y * Y) -> Y.
(* Test inductive types with local definitions *)
Inductive eq1 : forall A:Type, let B:=A in A -> Prop :=
refl1 : eq1 True I.
Check
fun (P : forall A : Type, let B := A in A -> Type) (f : P True I) (A : Type) =>
let B := A in
fun (a : A) (e : eq1 A a) =>
match e in (eq1 A0 B0 a0) return (P A0 a0) with
| refl1 => f
end.
Inductive eq2 (A:Type) (a:A)
: forall B C:Type, let D:=(A*B*C)%type in D -> Prop :=
refl2 : eq2 A a unit bool (a,tt,true).
(* Check that induction variables are cleared even with in clause *)
Lemma foo : forall n m : nat, n + m = n + m.
Proof.
intros; induction m as [|m] in n |- *.
auto.
auto.
Qed.
|