1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
(* The "?" of cons and eq should be inferred *)
Variable list : Set -> Set.
Variable cons : forall T : Set, T -> list T -> list T.
Check (forall n : list nat, exists l : _, (exists x : _, n = cons _ x l)).
(* Examples provided by Eduardo Gimenez *)
Definition c A (Q : (nat * A -> Prop) -> Prop) P :=
Q (fun p : nat * A => let (i, v) := p in P i v).
(* What does this test ? *)
Require Import List.
Definition list_forall_bool (A : Set) (p : A -> bool)
(l : list A) : bool :=
fold_right (fun a r => if p a then r else false) true l.
(* Checks that solvable ? in the lambda prefix of the definition are harmless*)
Parameter A1 A2 F B C : Set.
Parameter f : F -> A1 -> B.
Definition f1 frm0 a1 : B := f frm0 a1.
(* Checks that solvable ? in the type part of the definition are harmless *)
Definition f2 frm0 a1 : B := f frm0 a1.
(* Checks that sorts that are evars are handled correctly (bug 705) *)
Require Import List.
Fixpoint build (nl : list nat) :
match nl with
| nil => True
| _ => False
end -> unit :=
match nl return (match nl with
| nil => True
| _ => False
end -> unit) with
| nil => fun _ => tt
| n :: rest =>
match n with
| O => fun _ => tt
| S m => fun a => build rest (False_ind _ a)
end
end.
(* Checks that disjoint contexts are correctly set by restrict_hyp *)
(* Bug de 1999 corrigé en déc 2004 *)
Check
(let p :=
fun (m : nat) f (n : nat) =>
match f m n with
| exist a b => exist _ a b
end in
p
:forall x : nat,
(forall y n : nat, {q : nat | y = q * n}) ->
forall n : nat, {q : nat | x = q * n}).
(* Check instantiation of nested evars (bug #1089) *)
Check (fun f:(forall (v:Type->Type), v (v nat) -> nat) => f _ (Some (Some O))).
(* This used to fail with anomaly "evar was not declared" in V8.0pl3 *)
Theorem contradiction : forall p, ~ p -> p -> False.
Proof. trivial. Qed.
Hint Resolve contradiction.
Goal False.
eauto.
Abort.
(* This used to fail in V8.1beta because first-order unification was
used before using type information *)
Check (exist _ O (refl_equal 0) : {n:nat|n=0}).
Check (exist _ O I : {n:nat|True}).
(* An example (initially from Marseille/Fairisle) that involves an evar with
different solutions (Input, Output or bool) that may or may not be
considered distinct depending on which kind of conversion is used *)
Section A.
Definition STATE := (nat * bool)%type.
Let Input := bool.
Let Output := bool.
Parameter Out : STATE -> Output.
Check fun (s : STATE) (reg : Input) => reg = Out s.
End A.
(* The return predicate found should be: "in _=U return U" *)
(* (feature already available in V8.0) *)
Definition g (T1 T2:Type) (x:T1) (e:T1=T2) : T2 :=
match e with
| refl_equal => x
end.
(* An example extracted from FMapAVL which (may) test restriction on
evars problems of the form ?n[args1]=?n[args2] with distinct args1
and args2 *)
Set Implicit Arguments.
Parameter t:Set->Set.
Parameter map:forall elt elt' : Set, (elt -> elt') -> t elt -> t elt'.
Parameter avl: forall elt : Set, t elt -> Prop.
Parameter bst: forall elt : Set, t elt -> Prop.
Parameter map_avl: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
avl m -> avl (map f m).
Parameter map_bst: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
bst m -> bst (map f m).
Record bbst (elt:Set) : Set :=
Bbst {this :> t elt; is_bst : bst this; is_avl: avl this}.
Definition t' := bbst.
Section B.
Variables elt elt': Set.
Definition map' f (m:t' elt) : t' elt' :=
Bbst (map_bst f m.(is_bst)) (map_avl f m.(is_avl)).
End B.
Unset Implicit Arguments.
(* An example from Lexicographic_Exponentiation that tests the
contraction of reducible fixpoints in type inference *)
Require Import List.
Check (fun (A:Set) (a b x:A) (l:list A)
(H : l ++ cons x nil = cons b (cons a nil)) =>
app_inj_tail l (cons b nil) _ _ H).
(* An example from NMake (simplified), that uses restriction in solve_refl *)
Parameter h:(nat->nat)->(nat->nat).
Fixpoint G p cont {struct p} :=
h (fun n => match p with O => cont | S p => G p cont end n).
(* An example from Bordeaux/Cantor that applies evar restriction
below a binder *)
Require Import Relations.
Parameter lex : forall (A B : Set), (forall (a1 a2:A), {a1=a2}+{a1<>a2})
-> relation A -> relation B -> A * B -> A * B -> Prop.
Check
forall (A B : Set) eq_A_dec o1 o2,
antisymmetric A o1 -> transitive A o1 -> transitive B o2 ->
transitive _ (lex _ _ eq_A_dec o1 o2).
(* Another example from Julien Forest that tests unification below binders *)
Require Import List.
Set Implicit Arguments.
Parameter
merge : forall (A B : Set) (eqA : forall (a1 a2 : A), {a1=a2}+{a1<>a2})
(eqB : forall (b1 b2 : B), {b1=b2}+{b1<>b2})
(partial_res l : list (A*B)), option (list (A*B)).
Axiom merge_correct :
forall (A B : Set) eqA eqB (l1 l2 : list (A*B)),
(forall a2 b2 c2, In (a2,b2) l2 -> In (a2,c2) l2 -> b2 = c2) ->
match merge eqA eqB l1 l2 with _ => True end.
Unset Implicit Arguments.
(* An example from Bordeaux/Additions that tests restriction below binders *)
Section Additions_while.
Variable A : Set.
Variables P Q : A -> Prop.
Variable le : A -> A -> Prop.
Hypothesis Q_dec : forall s : A, P s -> {Q s} + {~ Q s}.
Hypothesis le_step : forall s : A, ~ Q s -> P s -> {s' | P s' /\ le s' s}.
Hypothesis le_wf : well_founded le.
Lemma loopexec : forall s : A, P s -> {s' : A | P s' /\ Q s'}.
refine
(well_founded_induction_type le_wf (fun s => _ -> {s' : A | _ /\ _})
(fun s hr i =>
match Q_dec s i with
| left _ => _
| right _ =>
match le_step s _ _ with
| exist s' h' =>
match hr s' _ _ with
| exist s'' _ => exist _ s'' _
end
end
end)).
Abort.
End Additions_while.
(* Two examples from G. Melquiond (bugs #1878 and #1884) *)
Parameter F1 G1 : nat -> Prop.
Goal forall x : nat, F1 x -> G1 x.
refine (fun x H => proj2 (_ x H)).
Abort.
Goal forall x : nat, F1 x -> G1 x.
refine (fun x H => proj2 (_ x H) _).
Abort.
(* An example from y-not that was failing in 8.2rc1 *)
Fixpoint filter (A:nat->Set) (l:list (sigT A)) : list (sigT A) :=
match l with
| nil => nil
| (existT k v)::l' => (existT _ k v):: (filter A l')
end.
(* Bug #2000: used to raise Out of memory in 8.2 while it should fail by
lack of information on the conclusion of the type of j *)
Goal True.
set (p:=fun j => j (or_intror _ (fun a:True => j (or_introl _ a)))) || idtac.
Abort.
(* Remark: the following example stopped succeeding at some time in
the development of 8.2 but it works again (this was because 8.2
algorithm was more general and did not exclude a solution that it
should have excluded for typing reason; handling of types and
backtracking is still to be done) *)
Section S.
Variables A B : nat -> Prop.
Goal forall x : nat, A x -> B x.
refine (fun x H => proj2 (_ x H) _).
Abort.
End S.
(* Check that constraints are taken into account by tactics that instantiate *)
Lemma inj : forall n m, S n = S m -> n = m.
intros n m H.
eapply f_equal with (* should fail because ill-typed *)
(f := fun n =>
match n return match n with S _ => nat | _ => unit end with
| S n => n
| _ => tt
end) in H
|| injection H.
Abort.
|