blob: e7b8ca2378bbbadc77f8b4f127dcde3fec890743 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Inductive T : Set :=
| A : T
| B : T -> T.
Lemma lem1 : forall x y : T, {x = y} + {x <> y}.
decide equality.
Qed.
Lemma lem2 : forall x y : T, {x = y} + {x <> y}.
intros x y.
decide equality x y.
Qed.
Lemma lem3 : forall x y : T, {x = y} + {x <> y}.
intros x y.
decide equality y x.
Qed.
Lemma lem4 : forall x y : T, {x = y} + {x <> y}.
intros x y.
compare x y; auto.
Qed.
|