summaryrefslogtreecommitdiff
path: root/test-suite/success/coercions.v
blob: 908b5f77d3d0f9271cd20e61c4104bb6e659c0fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
(* Interaction between coercions and casts *)
(*   Example provided by Eduardo Gimenez   *)

Parameter Z S : Set.

Parameter f : S -> Z.
Coercion f : S >-> Z.

Parameter g : Z -> Z.

Check (fun s => g (s:S)).


(* Check uniform inheritance condition *)

Parameter h : nat -> nat -> Prop.
Parameter i : forall n m : nat, h n m -> nat.
Coercion i : h >-> nat.

(* Check coercion to funclass when the source occurs in the target *)

Parameter C : nat -> nat -> nat.
Coercion C : nat >-> Funclass.

(* Remark: in the following example, it cannot be decided whether C is
   from nat to Funclass or from A to nat. An explicit Coercion command is
   expected

Parameter A : nat -> Prop.
Parameter C:> forall n:nat, A n -> nat.
*)

(* Check coercion between products based on eta-expansion *)
(* (there was a de Bruijn bug until rev 9254) *)

Section P.

Variable E : Set.
Variables C D : E -> Prop.
Variable G :> forall x, C x -> D x.

Check fun (H : forall y:E, y = y -> C y) => (H : forall y:E, y = y -> D y).

End P.

(* Check that class arguments are computed the same when looking for a
   coercion and when applying it (class_args_of) (failed until rev 9255) *)

Section Q.

Variable bool : Set.
Variables C D : bool -> Prop.
Variable G :> forall x, C x -> D x.
Variable f : nat -> bool.

Definition For_all (P : nat -> Prop) := forall x, P x.

Check fun (H : For_all (fun x => C (f x))) => H : forall x, D (f x).
Check fun (H : For_all (fun x => C (f x))) x => H x : D (f x).
Check fun (H : For_all (fun x => C (f x))) => H : For_all (fun x => D (f x)).

End Q.

(* Combining class lookup and path lookup so that if a lookup fails, another
   descent in the class can be found (see wish #1934) *)

Record Setoid : Type :=
{ car :>  Type }.

Record Morphism (X Y:Setoid) : Type :=
{evalMorphism :> X -> Y}.

Definition extSetoid (X Y:Setoid) : Setoid.
constructor.
exact (Morphism X Y).
Defined.

Definition ClaimA := forall (X Y:Setoid) (f: extSetoid X Y) x, f x= f x.

Coercion irrelevent := (fun _ => I) : True -> car (Build_Setoid True).

Definition ClaimB := forall (X Y:Setoid) (f: extSetoid X Y) (x:X), f x= f x.