1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
(* Test apply in *)
Goal (forall x y, x = S y -> y=y) -> 2 = 4 -> 3=3.
intros H H0.
apply H in H0.
assumption.
Qed.
Require Import ZArith.
Goal (forall x y z, ~ z <= 0 -> x * z < y * z -> x <= y)%Z.
intros; apply Znot_le_gt, Zgt_lt in H.
apply Zmult_lt_reg_r, Zlt_le_weak in H0; auto.
Qed.
(* Test application under tuples *)
Goal (forall x, x=0 <-> 0=x) -> 1=0 -> 0=1.
intros H H'.
apply H in H'.
exact H'.
Qed.
(* Test as clause *)
Goal (forall x, x=0 <-> (0=x /\ True)) -> 1=0 -> True.
intros H H'.
apply H in H' as (_,H').
exact H'.
Qed.
(* Test application modulo conversion *)
Goal (forall x, id x = 0 -> 0 = x) -> 1 = id 0 -> 0 = 1.
intros H H'.
apply H in H'.
exact H'.
Qed.
(* Check apply/eapply distinction in presence of open terms *)
Parameter h : forall x y z : nat, x = z -> x = y.
Implicit Arguments h [[x] [y]].
Goal 1 = 0 -> True.
intro H.
apply h in H || exact I.
Qed.
Goal False -> 1 = 0.
intro H.
apply h || contradiction.
Qed.
(* Check if it unfolds when there are not enough premises *)
Goal forall n, n = S n -> False.
intros.
apply n_Sn in H.
assumption.
Qed.
(* Check naming in with bindings; printing used to be inconsistent before *)
(* revision 9450 *)
Notation S':=S (only parsing).
Goal (forall S, S = S' S) -> (forall S, S = S' S).
intros.
apply H with (S0 := S).
Qed.
(* Check inference of implicit arguments in bindings *)
Goal exists y : nat -> Type, y 0 = y 0.
exists (fun x => True).
trivial.
Qed.
(* Check universe handling in typed unificationn *)
Definition E := Type.
Goal exists y : E, y = y.
exists Prop.
trivial.
Qed.
Variable Eq : Prop = (Prop -> Prop) :> E.
Goal Prop.
rewrite Eq.
Abort.
(* Check insertion of coercions in bindings *)
Coercion eq_true : bool >-> Sortclass.
Goal exists A:Prop, A = A.
exists true.
trivial.
Qed.
(* Check use of unification of bindings types in specialize *)
Variable P : nat -> Prop.
Variable L : forall (l : nat), P l -> P l.
Goal P 0 -> True.
intros.
specialize L with (1:=H).
Abort.
Reset P.
(* Two examples that show that hnf_constr is used when unifying types
of bindings (a simplification of a script from Field_Theory) *)
Require Import List.
Open Scope list_scope.
Fixpoint P (l : list nat) : Prop :=
match l with
| nil => True
| e1 :: nil => e1 = e1
| e1 :: l1 => e1 = e1 /\ P l1
end.
Variable L : forall n l, P (n::l) -> P l.
Goal forall (x:nat) l, P (x::l) -> P l.
intros.
apply L with (1:=H).
Qed.
Goal forall (x:nat) l, match l with nil => x=x | _::_ => x=x /\ P l end -> P l.
intros.
apply L with (1:=H).
Qed.
(* The following call to auto fails if the type of the clause
associated to the H is not beta-reduced [but apply H works]
(a simplification of a script from FSetAVL) *)
Definition apply (f:nat->Prop) := forall x, f x.
Goal apply (fun n => n=0) -> 1=0.
intro H.
auto.
Qed.
(* The following fails if the coercion Zpos is not introduced around p
before trying a subterm that matches the left-hand-side of the equality
(a simplication of an example taken from Nijmegen/QArith) *)
Require Import ZArith.
Coercion Zpos : positive >-> Z.
Variable f : Z -> Z -> Z.
Variable g : forall q1 q2 p : Z, f (f q1 p) (f q2 p) = Z0.
Goal forall p q1 q2, f (f q1 (Zpos p)) (f q2 (Zpos p)) = Z0.
intros; rewrite g with (p:=p).
reflexivity.
Qed.
(* A funny example where the behavior differs depending on which of a
multiple solution to a unification problem is chosen (an instance
of this case can be found in the proof of Buchberger.BuchRed.nf_divp) *)
Definition succ x := S x.
Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
(forall x y, P x -> Q x y) ->
(forall x, P (S x)) -> forall y: I (S 0), Q (succ 0) y.
intros.
apply H with (y:=y).
(* [x] had two possible instances: [S 0], coming from unifying the
type of [y] with [I ?n] and [succ 0] coming from the unification with
the goal; only the first one allows to make the next apply (which
does not work modulo delta) working *)
apply H0.
Qed.
(* A similar example with a arbitrary long conversion between the two
possible instances *)
Fixpoint compute_succ x :=
match x with O => S 0 | S n => S (compute_succ n) end.
Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
(forall x y, P x -> Q x y) ->
(forall x, P (S x)) -> forall y: I (S 100), Q (compute_succ 100) y.
intros.
apply H with (y:=y).
apply H0.
Qed.
(* Another example with multiple convertible solutions to the same
metavariable (extracted from Algebra.Hom_module.Hom_module, 10th
subgoal which precisely fails) *)
Definition ID (A:Type) := A.
Goal forall f:Type -> Type,
forall (P : forall A:Type, A -> Prop),
(forall (B:Type) x, P (f B) x -> P (f B) x) ->
(forall (A:Type) x, P (f (f A)) x) ->
forall (A:Type) (x:f (f A)), P (f (ID (f A))) x.
intros.
apply H.
(* The parameter [B] had two possible instances: [ID (f A)] by direct
unification and [f A] by unification of the type of [x]; only the
first choice makes the next command fail, as it was
(unfortunately?) in Hom_module *)
try apply H.
unfold ID; apply H0.
Qed.
(* Test coercion below product and on non meta-free terms in with bindings *)
(* Cf wishes #1408 from E. Makarov *)
Parameter bool_Prop :> bool -> Prop.
Parameter r : bool -> bool -> bool.
Axiom ax : forall (A : Set) (R : A -> A -> Prop) (x y : A), R x y.
Theorem t : r true false.
apply ax with (R := r).
Qed.
(* Check verification of type at unification (submitted by Stéphane Lengrand):
without verification, the first "apply" works what leads to the incorrect
instantiation of x by Prop *)
Theorem u : ~(forall x:Prop, ~x).
unfold not.
intro.
eapply H.
apply (forall B:Prop,B->B) || (instantiate (1:=True); exact I).
Defined.
(* Fine-tuning coercion insertion in presence of unfolding (bug #1883) *)
Parameter name : Set.
Definition atom := name.
Inductive exp : Set :=
| var : atom -> exp.
Coercion var : atom >-> exp.
Axiom silly_axiom : forall v : exp, v = v -> False.
Lemma silly_lemma : forall x : atom, False.
intros x.
apply silly_axiom with (v := x). (* fails *)
reflexivity.
Qed.
(* Check that unification does not commit too early to a representative
of an eta-equivalence class that would be incompatible with other
unification constraints *)
Lemma eta : forall f : (forall P, P 1),
(forall P, f P = f P) ->
forall Q, f (fun x => Q x) = f (fun x => Q x).
intros.
apply H.
Qed.
(* Test propagation of evars from subgoal to brother subgoals *)
(* This works because unfold calls clos_norm_flags which calls nf_evar *)
Lemma eapply_evar_unfold : let x:=O in O=x -> 0=O.
intros x H; eapply trans_equal;
[apply H | unfold x;match goal with |- ?x = ?x => reflexivity end].
Qed.
(* Test non-regression of (temporary) bug 1981 *)
Goal exists n : nat, True.
eapply ex_intro.
exact O.
trivial.
Qed.
(* Check pattern-unification on evars in apply unification *)
Lemma evar : exists f : nat -> nat, forall x, f x = 0 -> x = 0.
Proof.
eexists; intros x H.
apply H.
Qed.
(* Check that "as" clause applies to main premise only and leave the
side conditions away *)
Lemma side_condition :
forall (A:Type) (B:Prop) x, (True -> B -> x=0) -> B -> x=x.
Proof.
intros.
apply H in H0 as ->.
reflexivity.
exact I.
Qed.
(* Check that "apply" is chained on the last subgoal of each lemma and
that side conditions come first (as it is the case since 8.2) *)
Lemma chaining :
forall A B C : Prop,
(1=1 -> (2=2 -> A -> B) /\ True) ->
(3=3 -> (True /\ (4=4 -> C -> A))) -> C -> B.
Proof.
intros.
apply H, H0.
exact (refl_equal 1).
exact (refl_equal 2).
exact (refl_equal 3).
exact (refl_equal 4).
assumption.
Qed.
(* Check that the side conditions of "apply in", even when chained and
used through conjunctions, come last (as it is the case for single
calls to "apply in" w/o destruction of conjunction since 8.2) *)
Lemma chaining_in :
forall A B C : Prop,
(1=1 -> True /\ (B -> 2=2 -> 5=0)) ->
(3=3 -> (A -> 4=4 -> B) /\ True) -> A -> 0=5.
Proof.
intros.
apply H0, H in H1 as ->.
exact (refl_equal 0).
exact (refl_equal 1).
exact (refl_equal 2).
exact (refl_equal 3).
exact (refl_equal 4).
Qed.
(* From 12612, descent in conjunctions is more powerful *)
(* The following, which was failing badly in bug 1980, is now accepted
(even if somehow surprising) *)
Goal True.
eapply ex_intro.
instantiate (2:=fun _ :True => True).
instantiate (1:=I).
exact I.
Qed.
(* The following, which were not accepted, are now accepted as
expected by descent in conjunctions *)
Goal True.
eapply (ex_intro (fun _ => True) I).
exact I.
Qed.
Goal True.
eapply (fun (A:Prop) (x:A) => conj I x).
exact I.
Qed.
(* The following was not accepted from r12612 to r12657 *)
Record sig0 := { p1 : nat; p2 : p1 = 0 }.
Goal forall x : sig0, p1 x = 0.
intro x;
apply x.
Qed.
(* The following worked in 8.2 but was not accepted from r12229 to
r12926 because "simple apply" started to use pattern unification of
evars. Evars pattern unification for simple (e)apply was disabled
in 12927 but "simple eapply" below worked from 12898 to 12926
because pattern-unification also started supporting abstraction
over Metas. However it did not find the "simple" solution and hence
the subsequent "assumption" failed. *)
Goal exists f:nat->nat, forall x y, x = y -> f x = f y.
intros; eexists; intros.
simple eapply (@f_equal nat).
assumption.
Existential 1 := fun x => x.
Qed.
(* The following worked in 8.2 but was not accepted from r12229 to
r12897 for the same reason because eauto uses "simple apply". It
worked from 12898 to 12926 because eauto uses eassumption and not
assumption. *)
Goal exists f:nat->nat, forall x y, x = y -> f x = f y.
intros; eexists; intros.
eauto.
Existential 1 := fun x => x.
Qed.
(* The following was accepted before r12612 but is still not accepted in r12658
Goal forall x : { x:nat | x = 0}, proj1_sig x = 0.
intro x;
apply x.
*)
|