summaryrefslogtreecommitdiff
path: root/test-suite/success/apply.v
blob: fcce68b91a8d82991e6cc7ad1545ed7b201eb943 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
(* Test apply in *)

Goal (forall x y, x = S y -> y=y) -> 2 = 4 -> 3=3.
intros H H0.
apply H in H0.
assumption.
Qed.

Require Import ZArith.
Goal (forall x y z, ~ z <= 0 -> x * z < y * z -> x <= y)%Z.
intros; apply Znot_le_gt, Zgt_lt in H.
apply Zmult_lt_reg_r, Zlt_le_weak in H0; auto.
Qed.

(* Check if it unfolds when there are not enough premises *)

Goal forall n, n = S n -> False.
intros.
apply n_Sn in H.
assumption.
Qed.

(* Check naming in with bindings; printing used to be inconsistent before *)
(* revision 9450 *)

Notation S':=S (only parsing).
Goal (forall S, S = S' S) -> (forall S, S = S' S).
intros.
apply H with (S0 := S).
Qed.

(* Check inference of implicit arguments in bindings *)

Goal exists y : nat -> Type, y 0 = y 0.
exists (fun x => True).
trivial.
Qed.

(* Check universe handling in typed unificationn *)

Definition E := Type.
Goal exists y : E, y = y.
exists Prop.
trivial.
Qed.

Variable Eq : Prop = (Prop -> Prop) :> E.
Goal Prop.
rewrite Eq.
Abort.

(* Check insertion of coercions in bindings *)

Coercion eq_true : bool >-> Sortclass.
Goal exists A:Prop, A = A.
exists true.
trivial.
Qed.

(* Check use of unification of bindings types in specialize *)

Variable P : nat -> Prop.
Variable L : forall (l : nat), P l -> P l.
Goal P 0 -> True.
intros.
specialize L with (1:=H).
Abort.
Reset P.

(* Two examples that show that hnf_constr is used when unifying types
   of bindings (a simplification of a script from Field_Theory) *)

Require Import List.
Open Scope list_scope.
Fixpoint P (l : list nat) : Prop :=
  match l with
  | nil => True
  | e1 :: nil => e1 = e1
  | e1 :: l1 => e1 = e1 /\ P l1
  end.
Variable L : forall n l, P (n::l) -> P l.

Goal forall (x:nat) l, P (x::l) -> P l.
intros.
apply L with (1:=H).
Qed.

Goal forall (x:nat) l, match l with nil => x=x | _::_ => x=x /\ P l end -> P l.
intros.
apply L with (1:=H).
Qed.

(* The following call to auto fails if the type of the clause
   associated to the H is not beta-reduced [but apply H works]
   (a simplification of a script from FSetAVL) *)

Definition apply (f:nat->Prop) := forall x, f x.
Goal apply (fun n => n=0) -> 1=0.
intro H.
auto. 
Qed.

(* The following fails if the coercion Zpos is not introduced around p
   before trying a subterm that matches the left-hand-side of the equality
   (a simplication of an example taken from Nijmegen/QArith) *)

Require Import ZArith.
Coercion Zpos : positive >-> Z.
Variable f : Z -> Z -> Z.
Variable g : forall q1 q2 p : Z, f (f q1 p) (f q2 p) = Z0.
Goal forall p q1 q2, f (f q1 (Zpos p)) (f q2 (Zpos p)) = Z0.
intros; rewrite g with (p:=p).
reflexivity.
Qed.

(* A funny example where the behavior differs depending on which of a
   multiple solution to a unification problem is chosen (an instance
   of this case can be found in the proof of Buchberger.BuchRed.nf_divp) *)

Definition succ x := S x.
Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
  (forall x y, P x -> Q x y) -> 
  (forall x, P (S x)) -> forall y: I (S 0), Q (succ 0) y.
intros.
apply H with (y:=y). 
(* [x] had two possible instances: [S 0], coming from unifying the
   type of [y] with [I ?n] and [succ 0] coming from the unification with
   the goal; only the first one allows to make the next apply (which
   does not work modulo delta) working *)
apply H0.
Qed.

(* A similar example with a arbitrary long conversion between the two
   possible instances *)

Fixpoint compute_succ x := 
  match x with O => S 0 | S n => S (compute_succ n) end.

Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
  (forall x y, P x -> Q x y) -> 
  (forall x, P (S x)) -> forall y: I (S 100), Q (compute_succ 100) y.
intros.
apply H with (y:=y). 
apply H0.
Qed.

(* Another example with multiple convertible solutions to the same
   metavariable (extracted from Algebra.Hom_module.Hom_module, 10th
   subgoal which precisely fails) *)

Definition ID (A:Type) := A.
Goal forall f:Type -> Type, 
  forall (P : forall A:Type, A -> Prop), 
  (forall (B:Type) x, P (f B) x -> P (f B) x) -> 
  (forall (A:Type) x, P (f (f A)) x) -> 
  forall (A:Type) (x:f (f A)), P (f (ID (f A))) x.
intros.
apply H.
(* The parameter [B] had two possible instances: [ID (f A)] by direct
   unification and [f A] by unification of the type of [x]; only the
   first choice makes the next command fail, as it was
   (unfortunately?) in Hom_module *)
try apply H.
unfold ID; apply H0.
Qed.

(* Test coercion below product and on non meta-free terms in with bindings *)
(* Cf wishes #1408 from E. Makarov *)

Parameter bool_Prop :> bool -> Prop.
Parameter r : bool -> bool -> bool.
Axiom ax : forall (A : Set) (R : A -> A -> Prop) (x y : A), R x y.

Theorem t : r true false.
apply ax with (R := r).
Qed.

(* Check verification of type at unification (submitted by Stéphane Lengrand):
   without verification, the first "apply" works what leads to the incorrect
   instantiation of x by Prop *)

Theorem u : ~(forall x:Prop, ~x).
unfold not.
intro.
eapply H.
apply (forall B:Prop,B->B) || (instantiate (1:=True); exact I).
Defined.

(* Fine-tuning coercion insertion in presence of unfolding (bug #1883) *)

Parameter name : Set.
Definition atom := name.

Inductive exp : Set :=
  | var : atom -> exp.

Coercion var : atom >-> exp.

Axiom silly_axiom : forall v : exp, v = v -> False.

Lemma silly_lemma : forall x : atom, False.
intros x.
apply silly_axiom with (v := x).  (* fails *)