1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
Require Import ZArith Omega.
Open Scope Z_scope.
(* Pierre L: examples gathered while debugging romega. *)
Lemma test_romega_0 :
forall m m',
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros.
omega.
Qed.
Lemma test_romega_0b :
forall m m',
0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros m m'.
omega.
Qed.
Lemma test_romega_1 :
forall (z z1 z2 : Z),
z2 <= z1 ->
z1 <= z2 ->
z1 >= 0 ->
z2 >= 0 ->
z1 >= z2 /\ z = z1 \/ z1 <= z2 /\ z = z2 ->
z >= 0.
Proof.
intros.
omega.
Qed.
Lemma test_romega_1b :
forall (z z1 z2 : Z),
z2 <= z1 ->
z1 <= z2 ->
z1 >= 0 ->
z2 >= 0 ->
z1 >= z2 /\ z = z1 \/ z1 <= z2 /\ z = z2 ->
z >= 0.
Proof.
intros z z1 z2.
omega.
Qed.
Lemma test_romega_2 : forall a b c:Z,
0<=a-b<=1 -> b-c<=2 -> a-c<=3.
Proof.
intros.
omega.
Qed.
Lemma test_romega_2b : forall a b c:Z,
0<=a-b<=1 -> b-c<=2 -> a-c<=3.
Proof.
intros a b c.
omega.
Qed.
Lemma test_romega_3 : forall a b h hl hr ha hb,
0 <= ha - hl <= 1 ->
-2 <= hl - hr <= 2 ->
h =b+1 ->
(ha >= hr /\ a = ha \/ ha <= hr /\ a = hr) ->
(hl >= hr /\ b = hl \/ hl <= hr /\ b = hr) ->
(-3 <= ha -hr <=3 -> 0 <= hb - a <= 1) ->
(-2 <= ha-hr <=2 -> hb = a + 1) ->
0 <= hb - h <= 1.
Proof.
intros.
omega.
Qed.
Lemma test_romega_3b : forall a b h hl hr ha hb,
0 <= ha - hl <= 1 ->
-2 <= hl - hr <= 2 ->
h =b+1 ->
(ha >= hr /\ a = ha \/ ha <= hr /\ a = hr) ->
(hl >= hr /\ b = hl \/ hl <= hr /\ b = hr) ->
(-3 <= ha -hr <=3 -> 0 <= hb - a <= 1) ->
(-2 <= ha-hr <=2 -> hb = a + 1) ->
0 <= hb - h <= 1.
Proof.
intros a b h hl hr ha hb.
omega.
Qed.
Lemma test_romega_4 : forall hr ha,
ha = 0 ->
(ha = 0 -> hr =0) ->
hr = 0.
Proof.
intros hr ha.
omega.
Qed.
Lemma test_romega_5 : forall hr ha,
ha = 0 ->
(~ha = 0 \/ hr =0) ->
hr = 0.
Proof.
intros hr ha.
omega.
Qed.
Lemma test_romega_6 : forall z, z>=0 -> 0>z+2 -> False.
Proof.
intros.
omega.
Qed.
Lemma test_romega_6b : forall z, z>=0 -> 0>z+2 -> False.
Proof.
intros z.
omega.
Qed.
Lemma test_romega_7 : forall z,
0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
omega.
Qed.
Lemma test_romega_7b : forall z,
0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
omega.
Qed.
(* Magaud #240 *)
Lemma test_romega_8 : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
intros.
omega.
Qed.
Lemma test_romega_8b : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
intros x y.
omega.
Qed.
|