1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
Require Import Nsatz_domain ZArith Reals List Ring_polynom.
Variable A: Type.
Variable Ad: Domain A.
Add Ring Ar1: (@ring_ring A (@domain_ring _ Ad)).
Instance Ari : Ring A := {
ring0 := @ring0 A (@domain_ring _ Ad);
ring1 := @ring1 A (@domain_ring _ Ad);
ring_plus := @ring_plus A (@domain_ring _ Ad);
ring_mult := @ring_mult A (@domain_ring _ Ad);
ring_sub := @ring_sub A (@domain_ring _ Ad);
ring_opp := @ring_opp A (@domain_ring _ Ad);
ring_ring := @ring_ring A (@domain_ring _ Ad)}.
Instance Adi : Domain A := {
domain_ring := Ari;
domain_axiom_product := @domain_axiom_product A Ad;
domain_axiom_one_zero := @domain_axiom_one_zero A Ad}.
Instance zero_ring2 : Zero A := {zero := ring0}.
Instance one_ring2 : One A := {one := ring1}.
Instance addition_ring2 : Addition A := {addition x y := ring_plus x y}.
Instance multiplication_ring2 : Multiplication A := {multiplication x y := ring_mult x y}.
Instance subtraction_ring2 : Subtraction A := {subtraction x y := ring_sub x y}.
Instance opposite_ring2 : Opposite A := {opposite x := ring_opp x}.
Goal forall x y:A, x = y -> x+0 = y*1+0.
nsatz_domain.
Qed.
Goal forall a b c:A, a = b -> b = c -> c = a.
nsatz_domain.
Qed.
Goal forall a b c:A, a = b -> b = c -> a = c.
nsatz_domain.
Qed.
Goal forall a b c x:A, a = b -> b = c -> a*a = c*c.
nsatz_domain.
Qed.
Goal forall x y:Z, x = y -> (x+0)%Z = (y*1+0)%Z.
nsatz_domainZ.
Qed.
Goal forall x y:R, x = y -> (x+0)%R = (y*1+0)%R.
nsatz_domainR.
Qed.
Goal forall a b c x:R, a = b -> b = c -> (a*a)%R = (c*c)%R.
nsatz_domainR.
Qed.
Section Examples.
Delimit Scope PE_scope with PE.
Infix "+" := PEadd : PE_scope.
Infix "*" := PEmul : PE_scope.
Infix "-" := PEsub : PE_scope.
Infix "^" := PEpow : PE_scope.
Notation "[ n ]" := (@PEc Z n) (at level 0).
Open Scope R_scope.
Lemma example1 : forall x y,
x+y=0 ->
x*y=0 ->
x^2=0.
Proof.
nsatz_domainR.
Qed.
Lemma example2 : forall x, x^2=0 -> x=0.
Proof.
nsatz_domainR.
Qed.
(*
Notation X := (PEX Z 3).
Notation Y := (PEX Z 2).
Notation Z_ := (PEX Z 1).
*)
Lemma example3 : forall x y z,
x+y+z=0 ->
x*y+x*z+y*z=0->
x*y*z=0 -> x^3=0.
Proof.
Time nsatz_domainR.
simpl.
discrR.
Qed.
(*
Notation X := (PEX Z 4).
Notation Y := (PEX Z 3).
Notation Z_ := (PEX Z 2).
Notation U := (PEX Z 1).
*)
Lemma example4 : forall x y z u,
x+y+z+u=0 ->
x*y+x*z+x*u+y*z+y*u+z*u=0->
x*y*z+x*y*u+x*z*u+y*z*u=0->
x*y*z*u=0 -> x^4=0.
Proof.
Time nsatz_domainR.
Qed.
(*
Notation x_ := (PEX Z 5).
Notation y_ := (PEX Z 4).
Notation z_ := (PEX Z 3).
Notation u_ := (PEX Z 2).
Notation v_ := (PEX Z 1).
Notation "x :: y" := (List.cons x y)
(at level 60, right associativity, format "'[hv' x :: '/' y ']'").
Notation "x :: y" := (List.app x y)
(at level 60, right associativity, format "x :: y").
*)
Lemma example5 : forall x y z u v,
x+y+z+u+v=0 ->
x*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v=0->
x*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v=0->
x*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z=0 ->
x*y*z*u*v=0 -> x^5=0.
Proof.
Time nsatz_domainR.
Qed.
End Examples.
Section Geometry.
Open Scope R_scope.
Record point:Type:={
X:R;
Y:R}.
Definition collinear(A B C:point):=
(X A - X B)*(Y C - Y B)-(Y A - Y B)*(X C - X B)=0.
Definition parallel (A B C D:point):=
((X A)-(X B))*((Y C)-(Y D))=((Y A)-(Y B))*((X C)-(X D)).
Definition notparallel (A B C D:point)(x:R):=
x*(((X A)-(X B))*((Y C)-(Y D))-((Y A)-(Y B))*((X C)-(X D)))=1.
Definition orthogonal (A B C D:point):=
((X A)-(X B))*((X C)-(X D))+((Y A)-(Y B))*((Y C)-(Y D))=0.
Definition equal2(A B:point):=
(X A)=(X B) /\ (Y A)=(Y B).
Definition equal3(A B:point):=
((X A)-(X B))^2+((Y A)-(Y B))^2 = 0.
Definition nequal2(A B:point):=
(X A)<>(X B) \/ (Y A)<>(Y B).
Definition nequal3(A B:point):=
not (((X A)-(X B))^2+((Y A)-(Y B))^2 = 0).
Definition middle(A B I:point):=
2*(X I)=(X A)+(X B) /\ 2*(Y I)=(Y A)+(Y B).
Definition distance2(A B:point):=
(X B - X A)^2 + (Y B - Y A)^2.
(* AB = CD *)
Definition samedistance2(A B C D:point):=
(X B - X A)^2 + (Y B - Y A)^2 = (X D - X C)^2 + (Y D - Y C)^2.
Definition determinant(A O B:point):=
(X A - X O)*(Y B - Y O) - (Y A - Y O)*(X B - X O).
Definition scalarproduct(A O B:point):=
(X A - X O)*(X B - X O) + (Y A - Y O)*(Y B - Y O).
Definition norm2(A O B:point):=
((X A - X O)^2+(Y A - Y O)^2)*((X B - X O)^2+(Y B - Y O)^2).
Lemma a1:forall A B C:Prop, ((A\/B)/\(A\/C)) -> (A\/(B/\C)).
intuition.
Qed.
Lemma a2:forall A B C:Prop, ((A\/C)/\(B\/C)) -> ((A/\B)\/C).
intuition.
Qed.
Lemma a3:forall a b c d:R, (a-b)*(c-d)=0 -> (a=b \/ c=d).
intros.
assert ( (a-b = 0) \/ (c-d = 0)).
apply Rmult_integral.
trivial.
destruct H0.
left; nsatz_domainR.
right; nsatz_domainR.
Qed.
Ltac geo_unfold :=
unfold collinear; unfold parallel; unfold notparallel; unfold orthogonal;
unfold equal2; unfold equal3; unfold nequal2; unfold nequal3;
unfold middle; unfold samedistance2;
unfold determinant; unfold scalarproduct; unfold norm2; unfold distance2.
Ltac geo_end :=
repeat (
repeat (match goal with h:_/\_ |- _ => decompose [and] h; clear h end);
repeat (apply a1 || apply a2 || apply a3);
repeat split).
Ltac geo_rewrite_hyps:=
repeat (match goal with
| h:X _ = _ |- _ => rewrite h in *; clear h
| h:Y _ = _ |- _ => rewrite h in *; clear h
end).
Ltac geo_begin:=
geo_unfold;
intros;
geo_rewrite_hyps;
geo_end.
(* Examples *)
Lemma Thales: forall O A B C D:point,
collinear O A C -> collinear O B D ->
parallel A B C D ->
(distance2 O B * distance2 O C = distance2 O D * distance2 O A
/\ distance2 O B * distance2 C D = distance2 O D * distance2 A B)
\/ collinear O A B.
repeat geo_begin.
Time nsatz_domainR.
simpl;discrR.
Time nsatz_domainR.
simpl;discrR.
Qed.
Require Import NsatzR.
Lemma hauteurs:forall A B C A1 B1 C1 H:point,
collinear B C A1 -> orthogonal A A1 B C ->
collinear A C B1 -> orthogonal B B1 A C ->
collinear A B C1 -> orthogonal C C1 A B ->
collinear A A1 H -> collinear B B1 H ->
collinear C C1 H
\/ collinear A B C.
geo_begin.
(* Time nsatzRpv 2%N 1%Z (@nil R) (@nil R).*)
(*Finished transaction in 3. secs (2.363641u,0.s)*)
(*Time nsatz_domainR. trop long! *)
(* en fait nsatz_domain ne tient pas encore compte de la liste des variables! ;-) *)
Time
let lv := constr:(Y A1
:: X A1
:: Y B1
:: X B1
:: Y A0
:: Y B
:: X B
:: X A0
:: X H
:: Y C
:: Y C1 :: Y H :: X C1 :: X C ::nil) in
nsatz_domainpv 2%N 1%Z (@List.nil R) lv ltac:simplR Rdi.
(* Finished transaction in 6. secs (5.579152u,0.001s) *)
Qed.
End Geometry.
|