summaryrefslogtreecommitdiff
path: root/test-suite/success/Inversion.v
blob: f83328e82238f7d6712c66544b48500600d0d10e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Axiom magic : False.

(* Submitted by Dachuan Yu (bug #220) *)
Fixpoint T (n : nat) : Type :=
  match n with
  | O => nat -> Prop
  | S n' => T n'
  end. 
Inductive R : forall n : nat, T n -> nat -> Prop :=
  | RO : forall (Psi : T 0) (l : nat), Psi l -> R 0 Psi l
  | RS :
      forall (n : nat) (Psi : T (S n)) (l : nat), R n Psi l -> R (S n) Psi l. 
Definition Psi00 (n : nat) : Prop := False. 
Definition Psi0 : T 0 := Psi00. 
Lemma Inversion_RO : forall l : nat, R 0 Psi0 l -> Psi00 l.
inversion 1.
Abort.

(* Submitted by Pierre Casteran (bug #540) *)

Set Implicit Arguments.
Unset Strict Implicit.
Parameter rule : Set -> Type.

Inductive extension (I : Set) : Type :=
  | NL : extension I
  | add_rule : rule I -> extension I -> extension I.


Inductive in_extension (I : Set) (r : rule I) : extension I -> Type :=
  | in_first : forall e, in_extension r (add_rule r e)
  | in_rest : forall e r', in_extension r e -> in_extension r (add_rule r' e).

Implicit Arguments NL [I].

Inductive super_extension (I : Set) (e : extension I) :
extension I -> Type :=
  | super_NL : super_extension e NL
  | super_add :
      forall r (e' : extension I),
      in_extension r e ->
      super_extension e e' -> super_extension e (add_rule r e'). 



Lemma super_def :
 forall (I : Set) (e1 e2 : extension I),
 super_extension e2 e1 -> forall ru, in_extension ru e1 -> in_extension ru e2.
Proof.                 
 simple induction 1.
 inversion 1; auto.
 elim magic.
Qed.

(* Example from Norbert Schirmer on Coq-Club, Sep 2000 *)

Set Strict Implicit.
Unset Implicit Arguments.
Definition Q (n m : nat) (prf : n <= m) := True.
Goal forall (n m : nat) (H : S n <= m), Q (S n) m H = True.
intros.
dependent inversion_clear H.
elim magic.
elim magic.
Qed.

(* Submitted by Boris Yakobowski (bug #529) *)
(* Check that Inversion does not fail due to unnormalized evars *)

Set Implicit Arguments.
Unset Strict Implicit.
Require Import Bvector.

Inductive I : nat -> Set :=
  | C1 : I 1
  | C2 : forall k i : nat, vector (I i) k -> I i.

Inductive SI : forall k : nat, I k -> vector nat k -> nat -> Prop :=
    SC2 :
      forall (k i vf : nat) (v : vector (I i) k) (xi : vector nat i),
      SI (C2 v) xi vf.

Theorem SUnique :
 forall (k : nat) (f : I k) (c : vector nat k) v v',
 SI f c v -> SI f c v' -> v = v'.
Proof.
induction 1.
intros H; inversion H.
Admitted.

(* Used to failed at some time *)

Set Strict Implicit.
Unset Implicit Arguments.
Parameter bar : forall p q : nat, p = q -> Prop.
Inductive foo : nat -> nat -> Prop :=
    C : forall (a b : nat) (Heq : a = b), bar a b Heq -> foo a b.
Lemma depinv : forall a b, foo a b -> True.
intros a b H.
inversion H.
Abort.