blob: f8f7c99601758b59785c22a335e46341c196b80a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
(* Check the behaviour of Injection *)
(* Check that Injection tries Intro until *)
Lemma l1 : forall x : nat, S x = S (S x) -> False.
injection 1.
apply n_Sn.
Qed.
Lemma l2 : forall (x : nat) (H : S x = S (S x)), H = H -> False.
injection H.
intros.
apply (n_Sn x H0).
Qed.
(* Check that no tuple needs to be built *)
Lemma l3 :
forall x y : nat,
existS (fun n : nat => {n = n} + {n = n}) x (left _ (refl_equal x)) =
existS (fun n : nat => {n = n} + {n = n}) y (left _ (refl_equal y)) ->
x = y.
intros x y H.
injection H.
exact (fun H => H).
Qed.
(* Check that a tuple is built (actually the same as the initial one) *)
Lemma l4 :
forall p1 p2 : {0 = 0} + {0 = 0},
existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
existS (fun n : nat => {n = n} + {n = n}) 0 p2 ->
existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
existS (fun n : nat => {n = n} + {n = n}) 0 p2.
intros.
injection H.
exact (fun H => H).
Qed.
|