summaryrefslogtreecommitdiff
path: root/test-suite/success/Injection.v
blob: 867d73746cc78004181337960b9783cd3a0d172d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
(* Check the behaviour of Injection *)

(* Check that Injection tries Intro until *)

Lemma l1 : forall x : nat, S x = S (S x) -> False.
 injection 1.
apply n_Sn.
Qed.

Lemma l2 : forall (x : nat) (H : S x = S (S x)), H = H -> False.
 injection H.
intros.
apply (n_Sn x H0).
Qed.

(* Check that no tuple needs to be built *)
Lemma l3 :
 forall x y : nat,
 existS (fun n : nat => {n = n} + {n = n}) x (left _ (refl_equal x)) =
 existS (fun n : nat => {n = n} + {n = n}) y (left _ (refl_equal y)) -> 
 x = y.
intros x y H.
 injection H.
exact (fun H => H).
Qed.

(* Check that a tuple is built (actually the same as the initial one) *)
Lemma l4 :
 forall p1 p2 : {0 = 0} + {0 = 0},
 existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
 existS (fun n : nat => {n = n} + {n = n}) 0 p2 ->
 existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
 existS (fun n : nat => {n = n} + {n = n}) 0 p2.
intros.
 injection H.
exact (fun H => H).
Qed.

(* Test injection as *)

Lemma l5 : forall x y z t : nat, (x,y) = (z,t) -> x=z.
intros; injection H as Hyt Hxz.
exact Hxz.
Qed.

(* Check the variants of injection *)

Goal forall x y, S x = S y -> True.
injection 1 as H'.
Undo.
intros.
injection H as H'.
Undo.
Ltac f x := injection x.
f H.
Abort.

Goal (forall x y : nat, x = y -> S x = S y) -> True.
intros.
try injection (H O) || exact I.
Qed.

Goal (forall x y : nat, x = y -> S x = S y) -> True.
intros.
einjection (H O).
instantiate (1:=O).
Abort.

(* Injection does not projects at positions in Prop... allow it?

Inductive t (A:Prop) : Set := c : A -> t A.
Goal forall p q : True\/True, c _ p = c _ q -> False.
intros.
injection H.
Abort.

*)

(* Injection does not project on discriminable positions... allow it?

Goal 1=2 -> 1=0.
intro H.
injection H.
intro; assumption.
Qed.

*)