1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
Definition iszero (n : nat) : bool :=
match n with
| O => true
| _ => false
end.
Functional Scheme iszero_ind := Induction for iszero Sort Prop.
Lemma toto : forall n : nat, n = 0 -> iszero n = true.
intros x eg.
functional induction iszero x; simpl in |- *.
trivial.
inversion eg.
Qed.
Function ftest (n m : nat) : nat :=
match n with
| O => match m with
| O => 0
| _ => 1
end
| S p => 0
end.
Lemma test1 : forall n m : nat, ftest n m <= 2.
intros n m.
functional induction ftest n m; auto.
Qed.
Lemma test2 : forall m n, ~ 2 = ftest n m.
Proof.
intros n m;intro H.
functional inversion H ftest.
Qed.
Lemma test3 : forall n m, ftest n m = 0 -> (n = 0 /\ m = 0) \/ n <> 0.
Proof.
functional inversion 1 ftest;auto.
Qed.
Require Import Arith.
Lemma test11 : forall m : nat, ftest 0 m <= 2.
intros m.
functional induction ftest 0 m.
auto.
auto.
auto with *.
Qed.
Function lamfix (m n : nat) {struct n } : nat :=
match n with
| O => m
| S p => lamfix m p
end.
(* Parameter v1 v2 : nat. *)
Lemma lamfix_lem : forall v1 v2 : nat, lamfix v1 v2 = v1.
intros v1 v2.
functional induction lamfix v1 v2.
trivial.
assumption.
Defined.
(* polymorphic function *)
Require Import List.
Functional Scheme app_ind := Induction for app Sort Prop.
Lemma appnil : forall (A : Set) (l l' : list A), l' = nil -> l = l ++ l'.
intros A l l'.
functional induction app A l l'; intuition.
rewrite <- H0; trivial.
Qed.
Require Export Arith.
Function trivfun (n : nat) : nat :=
match n with
| O => 0
| S m => trivfun m
end.
(* essaie de parametre variables non locaux:*)
Parameter varessai : nat.
Lemma first_try : trivfun varessai = 0.
functional induction trivfun varessai.
trivial.
assumption.
Defined.
Functional Scheme triv_ind := Induction for trivfun Sort Prop.
Lemma bisrepetita : forall n' : nat, trivfun n' = 0.
intros n'.
functional induction trivfun n'.
trivial.
assumption.
Qed.
Function iseven (n : nat) : bool :=
match n with
| O => true
| S (S m) => iseven m
| _ => false
end.
Function funex (n : nat) : nat :=
match iseven n with
| true => n
| false => match n with
| O => 0
| S r => funex r
end
end.
Function nat_equal_bool (n m : nat) {struct n} : bool :=
match n with
| O => match m with
| O => true
| _ => false
end
| S p => match m with
| O => false
| S q => nat_equal_bool p q
end
end.
Require Export Div2.
Functional Scheme div2_ind := Induction for div2 Sort Prop.
Lemma div2_inf : forall n : nat, div2 n <= n.
intros n.
functional induction div2 n.
auto.
auto.
apply le_S.
apply le_n_S.
exact IHn0.
Qed.
(* reuse this lemma as a scheme:*)
Function nested_lam (n : nat) : nat -> nat :=
match n with
| O => fun m : nat => 0
| S n' => fun m : nat => m + nested_lam n' m
end.
Lemma nest : forall n m : nat, nested_lam n m = n * m.
intros n m.
functional induction nested_lam n m; simpl;auto.
Qed.
Function essai (x : nat) (p : nat * nat) {struct x} : nat :=
let (n, m) := (p: nat*nat) in
match n with
| O => 0
| S q => match x with
| O => 1
| S r => S (essai r (q, m))
end
end.
Lemma essai_essai :
forall (x : nat) (p : nat * nat), let (n, m) := p in 0 < n -> 0 < essai x p.
intros x p.
functional induction essai x p; intros.
inversion H.
auto with arith.
auto with arith.
Qed.
Function plus_x_not_five'' (n m : nat) {struct n} : nat :=
let x := nat_equal_bool m 5 in
let y := 0 in
match n with
| O => y
| S q =>
let recapp := plus_x_not_five'' q m in
match x with
| true => S recapp
| false => S recapp
end
end.
Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x.
intros a b.
functional induction plus_x_not_five'' a b; intros hyp; simpl in |- *; auto.
Qed.
Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true.
intros n m.
functional induction nat_equal_bool n m; simpl in |- *; intros hyp; auto.
rewrite <- hyp in y; simpl in y;tauto.
inversion hyp.
Qed.
Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m.
intros n m.
functional induction nat_equal_bool n m; simpl in |- *; intros eg; auto.
inversion eg.
inversion eg.
Qed.
Inductive istrue : bool -> Prop :=
istrue0 : istrue true.
Functional Scheme plus_ind := Induction for plus Sort Prop.
Lemma inf_x_plusxy' : forall x y : nat, x <= x + y.
intros n m.
functional induction plus n m; intros.
auto with arith.
auto with arith.
Qed.
Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0.
intros n.
unfold plus in |- *.
functional induction plus n 0; intros.
auto with arith.
apply le_n_S.
assumption.
Qed.
Lemma inf_x_plusxy''' : forall x : nat, x <= 0 + x.
intros n.
functional induction plus 0 n; intros; auto with arith.
Qed.
Function mod2 (n : nat) : nat :=
match n with
| O => 0
| S (S m) => S (mod2 m)
| _ => 0
end.
Lemma princ_mod2 : forall n : nat, mod2 n <= n.
intros n.
functional induction mod2 n; simpl in |- *; auto with arith.
Qed.
Function isfour (n : nat) : bool :=
match n with
| S (S (S (S O))) => true
| _ => false
end.
Function isononeorfour (n : nat) : bool :=
match n with
| S O => true
| S (S (S (S O))) => true
| _ => false
end.
Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n).
intros n.
functional induction isononeorfour n; intros istr; simpl in |- *;
inversion istr.
apply istrue0.
destruct n. inversion istr.
destruct n. tauto.
destruct n. inversion istr.
destruct n. inversion istr.
destruct n. tauto.
simpl in *. inversion H0.
Qed.
Lemma toto' : forall n m : nat, n = 4 -> istrue (isononeorfour n).
intros n.
functional induction isononeorfour n; intros m istr; inversion istr.
apply istrue0.
rewrite H in y; simpl in y;tauto.
Qed.
Function ftest4 (n m : nat) : nat :=
match n with
| O => match m with
| O => 0
| S q => 1
end
| S p => match m with
| O => 0
| S r => 1
end
end.
Lemma test4 : forall n m : nat, ftest n m <= 2.
intros n m.
functional induction ftest n m; auto with arith.
Qed.
Lemma test4' : forall n m : nat, ftest4 (S n) m <= 2.
intros n m.
assert ({n0 | n0 = S n}).
exists (S n);reflexivity.
destruct H as [n0 H1].
rewrite <- H1;revert H1.
functional induction ftest4 n0 m.
inversion 1.
inversion 1.
auto with arith.
auto with arith.
Qed.
Function ftest44 (x : nat * nat) (n m : nat) : nat :=
let (p, q) := (x: nat*nat) in
match n with
| O => match m with
| O => 0
| S q => 1
end
| S p => match m with
| O => 0
| S r => 1
end
end.
Lemma test44 :
forall (pq : nat * nat) (n m o r s : nat), ftest44 pq n (S m) <= 2.
intros pq n m o r s.
functional induction ftest44 pq n (S m).
auto with arith.
auto with arith.
auto with arith.
auto with arith.
Qed.
Function ftest2 (n m : nat) {struct n} : nat :=
match n with
| O => match m with
| O => 0
| S q => 0
end
| S p => ftest2 p m
end.
Lemma test2' : forall n m : nat, ftest2 n m <= 2.
intros n m.
functional induction ftest2 n m; simpl in |- *; intros; auto.
Qed.
Function ftest3 (n m : nat) {struct n} : nat :=
match n with
| O => 0
| S p => match m with
| O => ftest3 p 0
| S r => 0
end
end.
Lemma test3' : forall n m : nat, ftest3 n m <= 2.
intros n m.
functional induction ftest3 n m.
intros.
auto.
intros.
auto.
intros.
simpl in |- *.
auto.
Qed.
Function ftest5 (n m : nat) {struct n} : nat :=
match n with
| O => 0
| S p => match m with
| O => ftest5 p 0
| S r => ftest5 p r
end
end.
Lemma test5 : forall n m : nat, ftest5 n m <= 2.
intros n m.
functional induction ftest5 n m.
intros.
auto.
intros.
auto.
intros.
simpl in |- *.
auto.
Qed.
Function ftest7 (n : nat) : nat :=
match ftest5 n 0 with
| O => 0
| S r => 0
end.
Lemma essai7 :
forall (Hrec : forall n : nat, ftest5 n 0 = 0 -> ftest7 n <= 2)
(Hrec0 : forall n r : nat, ftest5 n 0 = S r -> ftest7 n <= 2)
(n : nat), ftest7 n <= 2.
intros hyp1 hyp2 n.
functional induction ftest7 n; auto.
Qed.
Function ftest6 (n m : nat) {struct n} : nat :=
match n with
| O => 0
| S p => match ftest5 p 0 with
| O => ftest6 p 0
| S r => ftest6 p r
end
end.
Lemma princ6 :
(forall n m : nat, n = 0 -> ftest6 0 m <= 2) ->
(forall n m p : nat,
ftest6 p 0 <= 2 -> ftest5 p 0 = 0 -> n = S p -> ftest6 (S p) m <= 2) ->
(forall n m p r : nat,
ftest6 p r <= 2 -> ftest5 p 0 = S r -> n = S p -> ftest6 (S p) m <= 2) ->
forall x y : nat, ftest6 x y <= 2.
intros hyp1 hyp2 hyp3 n m.
generalize hyp1 hyp2 hyp3.
clear hyp1 hyp2 hyp3.
functional induction ftest6 n m; auto.
Qed.
Lemma essai6 : forall n m : nat, ftest6 n m <= 2.
intros n m.
functional induction ftest6 n m; simpl in |- *; auto.
Qed.
(* Some tests with modules *)
Module M.
Function test_m (n:nat) : nat :=
match n with
| 0 => 0
| S n => S (S (test_m n))
end.
Lemma test_m_is_double : forall n, div2 (test_m n) = n.
Proof.
intros n.
functional induction (test_m n).
reflexivity.
simpl;rewrite IHn0;reflexivity.
Qed.
End M.
(* We redefine a new Function with the same name *)
Function test_m (n:nat) : nat :=
pred n.
Lemma test_m_is_pred : forall n, test_m n = pred n.
Proof.
intro n.
functional induction (test_m n). (* the test_m_ind to use is the last defined saying that test_m = pred*)
reflexivity.
Qed.
(* Checks if the dot notation are correctly treated in infos *)
Lemma M_test_m_is_double : forall n, div2 (M.test_m n) = n.
intro n.
(* here we should apply M.test_m_ind *)
functional induction (M.test_m n).
reflexivity.
simpl;rewrite IHn0;reflexivity.
Qed.
Import M.
(* Now test_m is the one which defines double *)
Lemma test_m_is_double : forall n, div2 (M.test_m n) = n.
intro n.
(* here we should apply M.test_m_ind *)
functional induction (test_m n).
reflexivity.
simpl;rewrite IHn0;reflexivity.
Qed.
|