1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
Definition iszero [n:nat] : bool := Cases n of
| O => true
| _ => false
end.
Functional Scheme iszer_ind := Induction for iszero.
Lemma toto : (n:nat) n = 0 -> (iszero n) = true.
Intros x eg.
Functional Induction iszero x; Simpl.
Trivial.
Subst x.
Inversion H_eq_.
Qed.
(* We can even reuse the proof as a scheme: *)
Functional Scheme toto_ind := Induction for iszero.
Definition ftest [n, m:nat] : nat :=
Cases n of
| O => Cases m of
| O => 0
| _ => 1
end
| (S p) => 0
end.
Functional Scheme ftest_ind := Induction for ftest.
Lemma test1 : (n,m:nat) (le (ftest n m) 2).
Intros n m.
Functional Induction ftest n m;Auto.
Save.
Lemma test11 : (m:nat) (le (ftest 0 m) 2).
Intros m.
Functional Induction ftest 0 m.
Auto.
Auto.
Qed.
Definition lamfix :=
[m:nat ]
(Fix trivfun {trivfun [n:nat] : nat := Cases n of
| O => m
| (S p) => (trivfun p)
end}).
(* Parameter v1 v2 : nat. *)
Lemma lamfix_lem : (v1,v2:nat) (lamfix v1 v2) = v1.
Intros v1 v2.
Functional Induction lamfix v1 v2.
Trivial.
Assumption.
Defined.
(* polymorphic function *)
Require PolyList.
Functional Scheme app_ind := Induction for app.
Lemma appnil : (A:Set)(l,l':(list A)) l'=(nil A) -> l = (app l l').
Intros A l l'.
Functional Induction app A l l';Intuition.
Rewrite <- H1;Trivial.
Save.
Require Export Arith.
Fixpoint trivfun [n:nat] : nat :=
Cases n of
| O => 0
| (S m) => (trivfun m)
end.
(* essaie de parametre variables non locaux:*)
Parameter varessai : nat.
Lemma first_try : (trivfun varessai) = 0.
Functional Induction trivfun varessai.
Trivial.
Simpl.
Assumption.
Defined.
Functional Scheme triv_ind := Induction for trivfun.
Lemma bisrepetita : (n':nat) (trivfun n') = 0.
Intros n'.
Functional Induction trivfun n'.
Trivial.
Simpl .
Assumption.
Qed.
Fixpoint iseven [n:nat] : bool :=
Cases n of
| O => true
| (S (S m)) => (iseven m)
| _ => false
end.
Fixpoint funex [n:nat] : nat :=
Cases (iseven n) of
| true => n
| false => Cases n of
| O => 0
| (S r) => (funex r)
end
end.
Fixpoint nat_equal_bool [n:nat] : nat -> bool :=
[m:nat]
Cases n of
| O => Cases m of
| O => true
| _ => false
end
| (S p) => Cases m of
| O => false
| (S q) => (nat_equal_bool p q)
end
end.
Require Export Div2.
Lemma div2_inf : (n:nat) (le (div2 n) n).
Intros n.
Functional Induction div2 n.
Auto.
Auto.
Apply le_S.
Apply le_n_S.
Exact H.
Qed.
(* reuse this lemma as a scheme:*)
Functional Scheme div2_ind := Induction for div2_inf.
Fixpoint nested_lam [n:nat] : nat -> nat :=
Cases n of
| O => [m:nat ] 0
| (S n') => [m:nat ] (plus m (nested_lam n' m))
end.
Functional Scheme nested_lam_ind := Induction for nested_lam.
Lemma nest : (n, m:nat) (nested_lam n m) = (mult n m).
Intros n m.
Functional Induction nested_lam n m; Auto.
Qed.
Lemma nest2 : (n, m:nat) (nested_lam n m) = (mult n m).
Intros n m. Pattern n m .
Apply nested_lam_ind; Simpl ; Intros; Auto.
Qed.
Fixpoint essai [x : nat] : nat * nat -> nat :=
[p : nat * nat] ( Case p of [n, m : ?] Cases n of
O => O
| (S q) =>
Cases x of
O => (S O)
| (S r) => (S (essai r (q, m)))
end
end end ).
Lemma essai_essai:
(x : nat)
(p : nat * nat) ( Case p of [n, m : ?] (lt O n) -> (lt O (essai x p)) end ).
Intros x p.
(Functional Induction essai x p); Intros.
Inversion H.
Simpl; Try Abstract ( Auto with arith ).
Simpl; Try Abstract ( Auto with arith ).
Qed.
Fixpoint plus_x_not_five'' [n : nat] : nat -> nat :=
[m : nat] let x = (nat_equal_bool m (S (S (S (S (S O)))))) in
let y = O in
Cases n of
O => y
| (S q) =>
let recapp = (plus_x_not_five'' q m) in
Cases x of true => (S recapp) | false => (S recapp) end
end.
Lemma notplusfive'':
(x, y : nat) y = (S (S (S (S (S O))))) -> (plus_x_not_five'' x y) = x.
Intros a b.
Unfold plus_x_not_five''.
(Functional Induction plus_x_not_five'' a b); Intros hyp; Simpl; Auto.
Qed.
Lemma iseq_eq: (n, m : nat) n = m -> (nat_equal_bool n m) = true.
Intros n m.
Unfold nat_equal_bool.
(Functional Induction nat_equal_bool n m); Simpl; Intros hyp; Auto.
Inversion hyp.
Inversion hyp.
Qed.
Lemma iseq_eq': (n, m : nat) (nat_equal_bool n m) = true -> n = m.
Intros n m.
Unfold nat_equal_bool.
(Functional Induction nat_equal_bool n m); Simpl; Intros eg; Auto.
Inversion eg.
Inversion eg.
Qed.
Inductive istrue : bool -> Prop :=
istrue0: (istrue true) .
Lemma inf_x_plusxy': (x, y : nat) (le x (plus x y)).
Intros n m.
(Functional Induction plus n m); Intros.
Auto with arith.
Auto with arith.
Qed.
Lemma inf_x_plusxy'': (x : nat) (le x (plus x O)).
Intros n.
Unfold plus.
(Functional Induction plus n O); Intros.
Auto with arith.
Apply le_n_S.
Assumption.
Qed.
Lemma inf_x_plusxy''': (x : nat) (le x (plus O x)).
Intros n.
(Functional Induction plus O n); Intros;Auto with arith.
Qed.
Fixpoint mod2 [n : nat] : nat :=
Cases n of O => O
| (S (S m)) => (S (mod2 m))
| _ => O end.
Lemma princ_mod2: (n : nat) (le (mod2 n) n).
Intros n.
(Functional Induction mod2 n); Simpl; Auto with arith.
Qed.
Definition isfour : nat -> bool :=
[n : nat] Cases n of (S (S (S (S O)))) => true | _ => false end.
Definition isononeorfour : nat -> bool :=
[n : nat] Cases n of (S O) => true
| (S (S (S (S O)))) => true
| _ => false end.
Lemma toto'': (n : nat) (istrue (isfour n)) -> (istrue (isononeorfour n)).
Intros n.
(Functional Induction isononeorfour n); Intros istr; Simpl; Inversion istr.
Apply istrue0.
Qed.
Lemma toto': (n, m : nat) n = (S (S (S (S O)))) -> (istrue (isononeorfour n)).
Intros n.
(Functional Induction isononeorfour n); Intros m istr; Inversion istr.
Apply istrue0.
Qed.
Definition ftest4 : nat -> nat -> nat :=
[n, m : nat] Cases n of
O =>
Cases m of O => O | (S q) => (S O) end
| (S p) =>
Cases m of O => O | (S r) => (S O) end
end.
Lemma test4: (n, m : nat) (le (ftest n m) (S (S O))).
Intros n m.
(Functional Induction ftest n m); Auto with arith.
Qed.
Lemma test4': (n, m : nat) (le (ftest4 (S n) m) (S (S O))).
Intros n m.
(Functional Induction ftest4 (S n) m).
Auto with arith.
Auto with arith.
Qed.
Definition ftest44 : nat * nat -> nat -> nat -> nat :=
[x : nat * nat]
[n, m : nat]
( Case x of [p, q : ?] Cases n of
O =>
Cases m of O => O | (S q) => (S O) end
| (S p) =>
Cases m of O => O | (S r) => (S O) end
end end ).
Lemma test44:
(pq : nat * nat) (n, m, o, r, s : nat) (le (ftest44 pq n (S m)) (S (S O))).
Intros pq n m o r s.
(Functional Induction ftest44 pq n (S m)).
Auto with arith.
Auto with arith.
Auto with arith.
Auto with arith.
Qed.
Fixpoint ftest2 [n : nat] : nat -> nat :=
[m : nat] Cases n of
O =>
Cases m of O => O | (S q) => O end
| (S p) => (ftest2 p m)
end.
Lemma test2: (n, m : nat) (le (ftest2 n m) (S (S O))).
Intros n m.
(Functional Induction ftest2 n m) ; Simpl; Intros; Auto.
Qed.
Fixpoint ftest3 [n : nat] : nat -> nat :=
[m : nat] Cases n of
O => O
| (S p) =>
Cases m of O => (ftest3 p O) | (S r) => O end
end.
Lemma test3: (n, m : nat) (le (ftest3 n m) (S (S O))).
Intros n m.
(Functional Induction ftest3 n m).
Intros.
Auto.
Intros.
Auto.
Intros.
Simpl.
Auto.
Qed.
Fixpoint ftest5 [n : nat] : nat -> nat :=
[m : nat] Cases n of
O => O
| (S p) =>
Cases m of O => (ftest5 p O) | (S r) => (ftest5 p r) end
end.
Lemma test5: (n, m : nat) (le (ftest5 n m) (S (S O))).
Intros n m.
(Functional Induction ftest5 n m).
Intros.
Auto.
Intros.
Auto.
Intros.
Simpl.
Auto.
Qed.
Definition ftest7 : (n : nat) nat :=
[n : nat] Cases (ftest5 n O) of O => O | (S r) => O end.
Lemma essai7:
(Hrec : (n : nat) (ftest5 n O) = O -> (le (ftest7 n) (S (S O))))
(Hrec0 : (n, r : nat) (ftest5 n O) = (S r) -> (le (ftest7 n) (S (S O))))
(n : nat) (le (ftest7 n) (S (S O))).
Intros hyp1 hyp2 n.
Unfold ftest7.
(Functional Induction ftest7 n); Auto.
Qed.
Fixpoint ftest6 [n : nat] : nat -> nat :=
[m : nat]
Cases n of
O => O
| (S p) =>
Cases (ftest5 p O) of O => (ftest6 p O) | (S r) => (ftest6 p r) end
end.
Lemma princ6:
((n, m : nat) n = O -> (le (ftest6 O m) (S (S O)))) ->
((n, m, p : nat)
(le (ftest6 p O) (S (S O))) ->
(ftest5 p O) = O -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) ->
((n, m, p, r : nat)
(le (ftest6 p r) (S (S O))) ->
(ftest5 p O) = (S r) -> n = (S p) -> (le (ftest6 (S p) m) (S (S O)))) ->
(x, y : nat) (le (ftest6 x y) (S (S O))).
Intros hyp1 hyp2 hyp3 n m.
Generalize hyp1 hyp2 hyp3.
Clear hyp1 hyp2 hyp3.
(Functional Induction ftest6 n m);Auto.
Qed.
Lemma essai6: (n, m : nat) (le (ftest6 n m) (S (S O))).
Intros n m.
Unfold ftest6.
(Functional Induction ftest6 n m); Simpl; Auto.
Qed.
|