summaryrefslogtreecommitdiff
path: root/test-suite/success/Case17.v
blob: 061e136e0feaa54c4d995e79696a8057fe70499d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
(* Check the synthesis of predicate from a cast in case of matching of
   the first component (here [list bool]) of a dependent type (here [sigS])
   (Simplification of an example from file parsing2.v of the Coq'Art
    exercises) *)

Require Import List.

Variable parse_rel : list bool -> list bool -> nat -> Prop.

Variables (l0 : list bool)
  (rec :
     forall l' : list bool,
     length l' <= S (length l0) ->
     {l'' : list bool & 
     {t : nat | parse_rel l' l'' t /\ length l'' <= length l'}} +
     {(forall (l'' : list bool) (t : nat), ~ parse_rel l' l'' t)}).

Axiom HHH : forall A : Prop, A.

Check
  (match rec l0 (HHH _) with
   | inleft (existS (false :: l1) _) => inright _ (HHH _)
   | inleft (existS (true :: l1) (exist t1 (conj Hp Hl))) =>
       inright _ (HHH _)
   | inleft (existS _ _) => inright _ (HHH _)
   | inright Hnp => inright _ (HHH _)
   end
   :{l'' : list bool & 
    {t : nat | parse_rel (true :: l0) l'' t /\ length l'' <= S (length l0)}} +
    {(forall (l'' : list bool) (t : nat), ~ parse_rel (true :: l0) l'' t)}).
 
(* The same but with relative links to l0 and rec *)
 
Check
  (fun (l0 : list bool)
     (rec : forall l' : list bool,
            length l' <= S (length l0) ->
            {l'' : list bool & 
            {t : nat | parse_rel l' l'' t /\ length l'' <= length l'}} +
            {(forall (l'' : list bool) (t : nat), ~ parse_rel l' l'' t)}) =>
   match rec l0 (HHH _) with
   | inleft (existS (false :: l1) _) => inright _ (HHH _)
   | inleft (existS (true :: l1) (exist t1 (conj Hp Hl))) =>
       inright _ (HHH _)
   | inleft (existS _ _) => inright _ (HHH _)
   | inright Hnp => inright _ (HHH _)
   end
   :{l'' : list bool & 
    {t : nat | parse_rel (true :: l0) l'' t /\ length l'' <= S (length l0)}} +
    {(forall (l'' : list bool) (t : nat), ~ parse_rel (true :: l0) l'' t)}).