1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
false: bool
true: bool
sumor_beq:
forall (A : Type) (B : Prop),
(A -> A -> bool) -> (B -> B -> bool) -> A + {B} -> A + {B} -> bool
sumbool_beq:
forall A B : Prop,
(A -> A -> bool) -> (B -> B -> bool) -> {A} + {B} -> {A} + {B} -> bool
xorb: bool -> bool -> bool
sum_beq:
forall A B : Type,
(A -> A -> bool) -> (B -> B -> bool) -> A + B -> A + B -> bool
prod_beq:
forall A B : Type,
(A -> A -> bool) -> (B -> B -> bool) -> A * B -> A * B -> bool
orb: bool -> bool -> bool
option_beq: forall A : Type, (A -> A -> bool) -> option A -> option A -> bool
negb: bool -> bool
nat_beq: nat -> nat -> bool
list_beq: forall A : Type, (A -> A -> bool) -> list A -> list A -> bool
implb: bool -> bool -> bool
comparison_beq: comparison -> comparison -> bool
bool_beq: bool -> bool -> bool
andb: bool -> bool -> bool
Empty_set_beq: Empty_set -> Empty_set -> bool
S: nat -> nat
O: nat
pred: nat -> nat
plus: nat -> nat -> nat
mult: nat -> nat -> nat
minus: nat -> nat -> nat
length: forall A : Type, list A -> nat
S: nat -> nat
pred: nat -> nat
plus: nat -> nat -> nat
mult: nat -> nat -> nat
minus: nat -> nat -> nat
mult_n_Sm: forall n m : nat, n * m + n = n * S m
le_n: forall n : nat, n <= n
eq_refl: forall (A : Type) (x : A), x = x
identity_refl: forall (A : Type) (a : A), identity a a
iff_refl: forall A : Prop, A <-> A
conj: forall A B : Prop, A -> B -> A /\ B
pair: forall A B : Type, A -> B -> A * B
|