1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
(**********************************************************************)
(* Test call to primitive printers in presence of coercion to *)
(* functions (cf bug #2044) *)
Inductive PAIR := P (n1:nat) (n2:nat).
Coercion P : nat >-> Funclass.
Check (2 3).
(* Check that notations with coercions to functions inserted still work *)
(* (were not working from revision 11886 to 12951) *)
Record Binop := { binop :> nat -> nat -> nat }.
Class Plusop := { plusop : Binop; zero : nat }.
Infix "[+]" := plusop (at level 40).
Instance Plus : Plusop := {| plusop := {| binop := plus |} ; zero := 0 |}.
Check 2[+]3.
(* Test bug #2091 (variable le was printed using <= !) *)
Check forall (A: Set) (le: A -> A -> Prop) (x y: A), le x y \/ le y x.
(* Test recursive notations in cases pattern *)
Remove Printing Let prod.
Check match (0,0,0) with (x,y,z) => x+y+z end.
Check let '(a,b,c) := ((2,3),4) in a.
(* Test notation for anonymous functions up to eta-expansion *)
Check fun P:nat->nat->Prop => fun x:nat => ex (P x).
(* Test notations with binders *)
Notation "∃ x .. y , P":= (ex (fun x => .. (ex (fun y => P)) ..))
(x binder, y binder, at level 200, right associativity).
Check (∃ n p, n+p=0).
Check ∃ (a:=0) (x:nat) y (b:=1) (c:=b) (d:=2) z (e:=3) (f:=4), x+y = z+d.
Notation "∀ x .. y , P":= (forall x, .. (forall y, P) ..)
(x binder, at level 200, right associativity).
Check (∀ n p, n+p=0).
Notation "'λ' x .. y , P":= (fun x => .. (fun y => P) ..)
(y binder, at level 200, right associativity).
Check (λ n p, n+p=0).
Generalizable Variable A.
Check `(λ n p : A, n=p).
Check `(∃ n p : A, n=p).
Check `(∀ n p : A, n=p).
Notation "'let'' f x .. y := t 'in' u":=
(let f := fun x => .. (fun y => t) .. in u)
(f ident, x closed binder, y closed binder, at level 200,
right associativity).
Check let' f x y (a:=0) z (b:bool) := x+y+z+1 in f 0 1 2.
(* In practice, only the printing rule is used here *)
(* Note: does not work for pattern *)
Notation "f ( x )" := (f x) (at level 10, format "f ( x )").
Check fun f x => f x + S x.
Open Scope list_scope.
Notation list1 := (1::nil)%list.
Notation plus2 n := (S (S n)).
(* plus2 was not correctly printed in the two following tests in 8.3pl1 *)
Print plus2.
Check fun n => match n with list1 => 0 | _ => 2 end.
(* This one is not fully satisfactory because binders in the same type
are re-factorized and parentheses are needed even for atomic binder
Notation "'mylet' f [ x ; .. ; y ] := t 'in' u":=
(let f := fun x => .. (fun y => t) .. in u)
(f ident, x closed binder, y closed binder, at level 200,
right associativity).
Check mylet f [x;y;z;(a:bool)] := x+y+z+1 in f 0 1 2.
*)
|