blob: 2b40f6c930e66209018ae91c8650a85829844b36 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
Require Import ZArith.
Require Import Psatz.
Open Scope Z_scope.
Lemma two_x_eq_1 : forall x, 2 * x = 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma two_x_y_eq_1 : forall x y, 2 * x + 2 * y = 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma two_x_y_z_eq_1 : forall x y z, 2 * x + 2 * y + 2 * z= 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma omega_nightmare : forall x y, 27 <= 11 * x + 13 * y <= 45 -> 7 * x - 9 * y = 4 -> -10 <= 7 * x - 9 * y <= 4 -> False.
Proof.
intros ; intuition auto.
lia.
Qed.
|