summaryrefslogtreecommitdiff
path: root/test-suite/micromega/bertot.v
blob: bcf222f92823fc77a1892e01e1994f07a0eb80c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

Require Import ZArith.
Require Import Psatz.

Open Scope Z_scope.

Goal (forall x y n,
  ( ~ x < n /\ x <= n /\ 2 * y = x*(x+1) -> 2 * y = n*(n+1))
  /\
  (x < n /\ x <= n /\ 2 * y = x * (x+1) -> x + 1 <= n /\ 2 *(x+1+y) = (x+1)*(x+2))).
Proof.
  intros.
  psatz Z 3.
Qed.