blob: d2b926f379253434907b7497322e2bbc148b301f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
(* Bug #2136
The fsetdec tactic seems to get confused by hypotheses like
HeqH1 : H1 = MkEquality s0 s1 b
If I clear them then it is able to solve my goal; otherwise it is not.
I would expect it to be able to solve the goal even without this hypothesis
being cleared. A small, self-contained example is below.
I have coq r12238.
Thanks
Ian
*)
Require Import FSets.
Require Import Arith.
Require Import FSetWeakList.
Module DecidableNat.
Definition t := nat.
Definition eq := @eq nat.
Definition eq_refl := @refl_equal nat.
Definition eq_sym := @sym_eq nat.
Definition eq_trans := @trans_eq nat.
Definition eq_dec := eq_nat_dec.
End DecidableNat.
Module NatSet := Make(DecidableNat).
Module Export Dec := WDecide (NatSet).
Import FSetDecideAuxiliary.
Parameter MkEquality : forall ( s0 s1 : NatSet.t )
( x : nat ),
NatSet.Equal s1 (NatSet.add x s0).
Lemma ThisLemmaWorks : forall ( s0 s1 : NatSet.t )
( a b : nat ),
NatSet.In a s0
-> NatSet.In a s1.
Proof.
intros.
remember (MkEquality s0 s1 b) as H1.
clear HeqH1.
fsetdec.
Qed.
Lemma ThisLemmaWasFailing : forall ( s0 s1 : NatSet.t )
( a b : nat ),
NatSet.In a s0
-> NatSet.In a s1.
Proof.
intros.
remember (MkEquality s0 s1 b) as H1.
fsetdec.
(*
Error: Tactic failure: because the goal is beyond the scope of this tactic.
*)
Qed.
|