blob: e598e5aed7905df4eb7704cb29edc1c71e79511c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
(* correct failure of injection/discriminate on types whose inductive
status derives from the substitution of an argument *)
Inductive t : nat -> Type :=
| M : forall n: nat, nat -> t n.
Lemma eq_t : forall n n' m m',
existT (fun B : Type => B) (t n) (M n m) =
existT (fun B : Type => B) (t n') (M n' m') -> True.
Proof.
intros.
injection H.
intro Ht.
exact I.
Qed.
Lemma eq_t' : forall n n' : nat,
existT (fun B : Type => B) (t n) (M n 0) =
existT (fun B : Type => B) (t n') (M n' 1) -> True.
Proof.
intros.
discriminate H || exact I.
Qed.
|