blob: 11e2ee44d6d52e44e1ee648eae122ab46734f68b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
(* Check that "dependent inversion" behaves correctly w.r.t to universes *)
Require Import Eqdep.
Set Implicit Arguments.
Inductive illist(A:Type) : nat -> Type :=
illistn : illist A 0
| illistc : forall n:nat, A -> illist A n -> illist A (S n).
Inductive isig (A:Type)(P:A -> Type) : Type :=
iexists : forall x : A, P x -> isig P.
Lemma inv : forall (A:Type)(n n':nat)(ts':illist A n'), n' = S n ->
isig (fun t => isig (fun ts =>
eq_dep nat (fun n => illist A n) n' ts' (S n) (illistc t ts))).
Proof.
intros.
dependent inversion ts'.
|