blob: 95bb66b962e60c3db15ab8266df71abc64e25ad8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
Require Import Div2.
Lemma double_div2: forall n, div2 (double n) = n.
exact (fun n => let _subcase :=
let _cofact := fun _ : 0 = 0 => refl_equal 0 in
_cofact (let _fact := refl_equal 0 in _fact) in
let _subcase0 :=
fun (m : nat) (Hrec : div2 (double m) = m) =>
let _fact := f_equal div2 (double_S m) in
let _eq := trans_eq _fact (refl_equal (S (div2 (double m)))) in
let _eq0 :=
trans_eq _eq
(trans_eq
(f_equal (fun f : nat -> nat => f (div2 (double m)))
(refl_equal S)) (f_equal S Hrec)) in
_eq0 in
(fix _fix (__ : nat) : div2 (double __) = __ :=
match __ as n return (div2 (double n) = n) with
| 0 => _subcase
| S __0 =>
(fun _hrec : div2 (double __0) = __0 => _subcase0 __0 _hrec)
(_fix __0)
end) n).
Guarded.
Defined.
|