blob: 4c24b481bdd7b8dfa6b30cad9587c967e6b64834 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
Axiom pl : (nat -> Prop) -> (nat -> Prop) -> (nat -> Prop).
Axiom plImp : forall k P Q,
pl P Q k -> forall (P':nat -> Prop),
(forall k', P k' -> P' k') -> forall (Q':nat -> Prop),
(forall k', Q k' -> Q' k') ->
pl P' Q' k.
Definition nexists (P:nat -> nat -> Prop) : nat -> Prop :=
fun k' => exists k, P k k'.
Goal forall k (A:nat -> nat -> Prop) (B:nat -> Prop),
pl (nexists A) B k.
intros.
eapply plImp.
2:intros m' M'; econstructor; apply M'.
2:intros m' M'; apply M'.
simpl.
Admitted.
|