blob: fe3b4c8b41a83a33e3708763f633f522cc9e9785 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
Require Import Relations.
Require Import Setoid.
Require Import Ring_theory.
Require Import Ring_base.
Variable R : Type.
Variable Rone Rzero : R.
Variable Rplus Rmult Rminus : R -> R -> R.
Variable Rneg : R -> R.
Lemma my_ring_theory : @ring_theory R Rzero Rone Rplus Rmult Rminus Rneg (@eq
R).
Admitted.
Variable Req : R -> R -> Prop.
Hypothesis Req_refl : reflexive _ Req.
Hypothesis Req_sym : symmetric _ Req.
Hypothesis Req_trans : transitive _ Req.
Add Relation R Req
reflexivity proved by Req_refl
symmetry proved by Req_sym
transitivity proved by Req_trans
as Req_rel.
Add Ring my_ring : my_ring_theory (abstract).
|