1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
Require Import TestSuite.admit.
(* -*- mode: coq; coq-prog-args: ("-emacs" "-indices-matter") *)
(* File reduced by coq-bug-finder from original input, then from 4988 lines to 856 lines, then from 648 lines to 398 lines, then from 401 lines to 332 lines, then from 287 lines to 250 lines, then from 257 lines to 241 lines, then from 223 lines to 175 lines *)
Set Universe Polymorphism.
Set Asymmetric Patterns.
Reserved Notation "g 'o' f" (at level 40, left associativity).
Generalizable All Variables.
Definition admit {T} : T.
Admitted.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y" := (@paths _ x y) : type_scope.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) : Type
:= forall x:A, f x = g x.
Hint Unfold pointwise_paths : typeclass_instances.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g)
: forall x, f x = g x
:= fun x => match h with idpath => idpath end.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { equiv_inv : B -> A }.
Record Equiv A B := BuildEquiv { equiv_fun :> A -> B ; equiv_isequiv :> IsEquiv equiv_fun }.
Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope.
Class Contr_internal (A : Type) := {}.
Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.
Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
match n with
| minus_two => Contr_internal A
| trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y)
end.
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
Trunc_is_trunc : IsTrunc_internal n A.
Instance istrunc_paths (A : Type) n `{H : IsTrunc (trunc_S n) A} (x y : A)
: IsTrunc n (x = y)
:= H x y.
Notation IsHSet := (IsTrunc minus_two).
Class Funext :=
{ isequiv_apD10 :> forall (A : Type) (P : A -> Type) f g, IsEquiv (@apD10 A P f g) }.
Local Open Scope equiv_scope.
Global Instance isequiv_inverse `{IsEquiv A B f} : IsEquiv f^-1 | 10000
:= BuildIsEquiv B A f^-1 f.
Instance trunc_succ `{IsTrunc n A} : IsTrunc (trunc_S n) A | 1000.
admit.
Defined.
Definition trunc_equiv `(f : A -> B)
`{IsTrunc n A} `{IsEquiv A B f}
: IsTrunc n B.
admit.
Defined.
Definition trunc_equiv' `(f : A <~> B) `{IsTrunc n A}
: IsTrunc n B
:= admit.
Set Implicit Arguments.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.
Record PreCategory :=
Build_PreCategory {
object :> Type;
morphism : object -> object -> Type;
identity : forall x, morphism x x;
compose : forall s d d',
morphism d d'
-> morphism s d
-> morphism s d'
where "f 'o' g" := (compose f g);
associativity : forall x1 x2 x3 x4
(m1 : morphism x1 x2)
(m2 : morphism x2 x3)
(m3 : morphism x3 x4),
(m3 o m2) o m1 = m3 o (m2 o m1);
left_identity : forall a b (f : morphism a b), identity b o f = f;
right_identity : forall a b (f : morphism a b), f o identity a = f;
trunc_morphism : forall s d, IsHSet (morphism s d)
}.
Existing Instance trunc_morphism.
Infix "o" := (@compose _ _ _ _) : morphism_scope.
Delimit Scope functor_scope with functor.
Local Open Scope morphism_scope.
Record Functor (C D : PreCategory) :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d -> morphism D (object_of s) (object_of d)
}.
Global Instance trunc_forall `{Funext} `{P : A -> Type} `{forall a, IsTrunc n (P a)}
: IsTrunc n (forall a, P a) | 100.
Proof.
generalize dependent P.
induction n as [ | n' IH]; (simpl; intros P ?).
- admit.
- pose (fun f g => trunc_equiv (@apD10 A P f g) ^-1); admit.
Defined.
Instance trunc_sigma `{P : A -> Type}
`{IsTrunc n A} `{forall a, IsTrunc n (P a)}
: IsTrunc n (sigT P) | 100.
admit.
Defined.
Record NaturalTransformation C D (F G : Functor C D) :=
Build_NaturalTransformation' {
components_of :> forall c, morphism D (F c) (G c)
}.
Section path_natural_transformation.
Context `{Funext}.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F G : Functor C D.
Lemma equiv_sig_natural_transformation
: { CO : forall x, morphism D (F x) (G x)
& forall s d (m : morphism C s d),
CO d o morphism_of F _ _ m = morphism_of G _ _ m o CO s }
<~> NaturalTransformation F G.
admit.
Defined.
Global Instance trunc_natural_transformation
: IsHSet (NaturalTransformation F G).
Proof.
eapply trunc_equiv'; [ exact equiv_sig_natural_transformation | ].
typeclasses eauto.
Qed.
Lemma path_natural_transformation (T U : NaturalTransformation F G)
: components_of T == components_of U
-> T = U.
admit.
Defined.
End path_natural_transformation.
Ltac path_natural_transformation :=
repeat match goal with
| _ => intro
| _ => apply path_natural_transformation; simpl
end.
Section FunctorSectionCategory.
Context `{Funext}.
Variable C : PreCategory.
Variable D : PreCategory.
Definition category_of_sections : PreCategory.
Proof.
refine (@Build_PreCategory
(Functor D C)
(fun F G => NaturalTransformation F G)
admit
admit
_
_
_
_);
abstract (path_natural_transformation; admit).
Defined. (* Stack overflow *)
|