1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
Module FirstComment.
Set Implicit Arguments.
Generalizable All Variables.
Set Asymmetric Patterns.
Set Universe Polymorphism.
Reserved Notation "x # y" (at level 40, left associativity).
Reserved Notation "x #m y" (at level 40, left associativity).
Delimit Scope object_scope with object.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Record Category (obj : Type) :=
{
Object :> _ := obj;
Morphism : obj -> obj -> Type;
Identity : forall x, Morphism x x;
Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d'
}.
Bind Scope object_scope with Object.
Bind Scope morphism_scope with Morphism.
Arguments Object {obj%type} C%category / : rename.
Arguments Morphism {obj%type} !C%category s d : rename. (* , simpl nomatch. *)
Arguments Identity {obj%type} [!C%category] x%object : rename.
Arguments Compose {obj%type} [!C%category s%object d%object d'%object] m1%morphism m2%morphism : rename.
Bind Scope category_scope with Category.
Record Functor
`(C : @Category objC)
`(D : @Category objD)
:= {
ObjectOf :> objC -> objD;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d)
}.
Record NaturalTransformation
`(C : @Category objC)
`(D : @Category objD)
(F G : Functor C D)
:= {
ComponentsOf :> forall c, D.(Morphism) (F c) (G c)
}.
Definition ProductCategory
`(C : @Category objC)
`(D : @Category objD)
: @Category (objC * objD)%type.
refine (@Build_Category _
(fun s d => (C.(Morphism) (fst s) (fst d) * D.(Morphism) (snd s) (snd d))%type)
(fun o => (Identity (fst o), Identity (snd o)))
(fun s d d' m2 m1 => (Compose (fst m2) (fst m1), Compose (snd m2) (snd m1)))).
Defined.
Infix "*" := ProductCategory : category_scope.
Record IsomorphismOf `{C : @Category objC} {s d} (m : C.(Morphism) s d) :=
{
IsomorphismOf_Morphism :> C.(Morphism) s d := m;
Inverse : C.(Morphism) d s
}.
Record NaturalIsomorphism
`(C : @Category objC)
`(D : @Category objD)
(F G : Functor C D)
:= {
NaturalIsomorphism_Transformation :> NaturalTransformation F G;
NaturalIsomorphism_Isomorphism : forall x : objC, IsomorphismOf (NaturalIsomorphism_Transformation x)
}.
Section PreMonoidalCategory.
Context `(C : @Category objC).
Variable TensorProduct : Functor (C * C) C.
Let src {C : @Category objC} {s d} (_ : Morphism C s d) := s.
Let dst {C : @Category objC} {s d} (_ : Morphism C s d) := d.
Local Notation "A # B" := (TensorProduct (A, B)).
Local Notation "A #m B" := (TensorProduct.(MorphismOf) ((@src _ _ _ A, @src _ _ _ B)) ((@dst _ _ _ A, @dst _ _ _ B)) (A, B)%morphism).
Let TriMonoidalProductL_ObjectOf (abc : C * C * C) : C :=
(fst (fst abc) # snd (fst abc)) # snd abc.
Let TriMonoidalProductR_ObjectOf (abc : C * C * C) : C :=
fst (fst abc) # (snd (fst abc) # snd abc).
Let TriMonoidalProductL_MorphismOf (s d : C * C * C) (m : Morphism (C * C * C) s d) :
Morphism C (TriMonoidalProductL_ObjectOf s) (TriMonoidalProductL_ObjectOf d).
Admitted.
Let TriMonoidalProductR_MorphismOf (s d : C * C * C) (m : Morphism (C * C * C) s d) :
Morphism C (TriMonoidalProductR_ObjectOf s) (TriMonoidalProductR_ObjectOf d).
Admitted.
Definition TriMonoidalProductL : Functor (C * C * C) C.
refine (Build_Functor (C * C * C) C
TriMonoidalProductL_ObjectOf
TriMonoidalProductL_MorphismOf).
Defined.
Definition TriMonoidalProductR : Functor (C * C * C) C.
refine (Build_Functor (C * C * C) C
TriMonoidalProductR_ObjectOf
TriMonoidalProductR_MorphismOf).
Defined.
Variable Associator : NaturalIsomorphism TriMonoidalProductL TriMonoidalProductR.
Section AssociatorCoherenceCondition.
Variables a b c d : C.
(* going from top-left *)
Let AssociatorCoherenceConditionT0 : Morphism C (((a # b) # c) # d) ((a # (b # c)) # d)
:= Associator (a, b, c) #m Identity (C := C) d.
Let AssociatorCoherenceConditionT1 : Morphism C ((a # (b # c)) # d) (a # ((b # c) # d))
:= Associator (a, b # c, d).
Let AssociatorCoherenceConditionT2 : Morphism C (a # ((b # c) # d)) (a # (b # (c # d)))
:= Identity (C := C) a #m Associator (b, c, d).
Let AssociatorCoherenceConditionB0 : Morphism C (((a # b) # c) # d) ((a # b) # (c # d))
:= Associator (a # b, c, d).
Let AssociatorCoherenceConditionB1 : Morphism C ((a # b) # (c # d)) (a # (b # (c # d)))
:= Associator (a, b, c # d).
Definition AssociatorCoherenceCondition' :=
Compose AssociatorCoherenceConditionT2 (Compose AssociatorCoherenceConditionT1 AssociatorCoherenceConditionT0)
= Compose AssociatorCoherenceConditionB1 AssociatorCoherenceConditionB0.
End AssociatorCoherenceCondition.
Definition AssociatorCoherenceCondition := Eval unfold AssociatorCoherenceCondition' in
forall a b c d : C, AssociatorCoherenceCondition' a b c d.
End PreMonoidalCategory.
Section MonoidalCategory.
Variable objC : Type.
Let AssociatorCoherenceCondition' := Eval unfold AssociatorCoherenceCondition in @AssociatorCoherenceCondition.
Record MonoidalCategory :=
{
MonoidalUnderlyingCategory :> @Category objC;
TensorProduct : Functor (MonoidalUnderlyingCategory * MonoidalUnderlyingCategory) MonoidalUnderlyingCategory;
IdentityObject : objC;
Associator : NaturalIsomorphism (TriMonoidalProductL TensorProduct) (TriMonoidalProductR TensorProduct);
AssociatorCoherent : AssociatorCoherenceCondition' Associator
}.
End MonoidalCategory.
Section EnrichedCategory.
Context `(M : @MonoidalCategory objM).
Let x : M := IdentityObject M.
(* Anomaly: apply_coercion_args: mismatch between arguments and coercion. Please report. *)
End EnrichedCategory.
End FirstComment.
Module SecondComment.
Set Implicit Arguments.
Set Universe Polymorphism.
Generalizable All Variables.
Record prod (A B : Type) := pair { fst : A; snd : B }.
Arguments fst {A B} _.
Arguments snd {A B} _.
Infix "*" := prod : type_scope.
Notation " ( x , y ) " := (@pair _ _ x y).
Record Category (obj : Type) :=
Build_Category {
Object :> _ := obj;
Morphism : obj -> obj -> Type;
Identity : forall x, Morphism x x;
Compose : forall s d d', Morphism d d' -> Morphism s d -> Morphism s d'
}.
Arguments Identity {obj%type} [!C] x : rename.
Arguments Compose {obj%type} [!C s d d'] m1 m2 : rename.
Record > Category' :=
{
LSObject : Type;
LSUnderlyingCategory :> @Category LSObject
}.
Section Functor.
Context `(C : @Category objC).
Context `(D : @Category objD).
Record Functor :=
{
ObjectOf :> objC -> objD;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d)
}.
End Functor.
Arguments MorphismOf {objC%type} [C] {objD%type} [D] F [s d] m : rename, simpl nomatch.
Section FunctorComposition.
Context `(C : @Category objC).
Context `(D : @Category objD).
Context `(E : @Category objE).
Definition ComposeFunctors (G : Functor D E) (F : Functor C D) : Functor C E.
Admitted.
End FunctorComposition.
Section IdentityFunctor.
Context `(C : @Category objC).
Definition IdentityFunctor : Functor C C.
refine {| ObjectOf := (fun x => x);
MorphismOf := (fun _ _ x => x)
|}.
Defined.
End IdentityFunctor.
Section ProductCategory.
Context `(C : @Category objC).
Context `(D : @Category objD).
Definition ProductCategory : @Category (objC * objD)%type.
refine (@Build_Category _
(fun s d => (C.(Morphism) (fst s) (fst d) * D.(Morphism) (snd s) (snd d))%type)
(fun o => (Identity (fst o), Identity (snd o)))
(fun s d d' m2 m1 => (Compose (fst m2) (fst m1), Compose (snd m2) (snd m1)))).
Defined.
End ProductCategory.
Definition OppositeCategory `(C : @Category objC) : Category objC :=
@Build_Category objC
(fun s d => Morphism C d s)
(Identity (C := C))
(fun _ _ _ m1 m2 => Compose m2 m1).
Parameter FunctorCategory : forall `(C : @Category objC) `(D : @Category objD), @Category (Functor C D).
Parameter TerminalCategory : Category unit.
Section ComputableCategory.
Variable I : Type.
Variable Index2Object : I -> Type.
Variable Index2Cat : forall i : I, @Category (@Index2Object i).
Local Coercion Index2Cat : I >-> Category.
Definition ComputableCategory : @Category I.
refine (@Build_Category _
(fun C D : I => Functor C D)
(fun o : I => IdentityFunctor o)
(fun C D E : I => ComposeFunctors (C := C) (D := D) (E := E))).
Defined.
End ComputableCategory.
Section SmallCat.
Definition LocallySmallCat := ComputableCategory _ LSUnderlyingCategory.
End SmallCat.
Section CommaCategory.
Context `(A : @Category objA).
Context `(B : @Category objB).
Context `(C : @Category objC).
Variable S : Functor A C.
Variable T : Functor B C.
Record CommaCategory_Object := { CommaCategory_Object_Member :> { ab : objA * objB & C.(Morphism) (S (fst ab)) (T (snd ab)) } }.
Let SortPolymorphic_Helper (A T : Type) (Build_T : A -> T) := A.
Definition CommaCategory_ObjectT := Eval hnf in SortPolymorphic_Helper Build_CommaCategory_Object.
Definition Build_CommaCategory_Object' (mem : CommaCategory_ObjectT) := Build_CommaCategory_Object mem.
Global Coercion Build_CommaCategory_Object' : CommaCategory_ObjectT >-> CommaCategory_Object.
Definition CommaCategory : @Category CommaCategory_Object.
Admitted.
End CommaCategory.
Definition SliceCategory_Functor `(C : @Category objC) (a : C) : Functor TerminalCategory C
:= {| ObjectOf := (fun _ => a);
MorphismOf := (fun _ _ _ => Identity a)
|}.
Definition SliceCategoryOver
: forall (objC : Type) (C : Category objC) (a : C),
Category
(CommaCategory_Object (IdentityFunctor C)
(SliceCategory_Functor C a)).
admit.
Defined.
Section CommaCategoryProjectionFunctor.
Context `(A : Category objA).
Context `(B : Category objB).
Context `(C : Category objC).
Variable S : (OppositeCategory (FunctorCategory A C)).
Variable T : (FunctorCategory B C).
Definition CommaCategoryProjection : Functor (CommaCategory S T) (ProductCategory A B).
Admitted.
Definition CommaCategoryProjectionFunctor_ObjectOf
: @SliceCategoryOver _ LocallySmallCat (ProductCategory A B)
:=
existT _
((CommaCategory S T) : Category', tt)
(CommaCategoryProjection) :
CommaCategory_ObjectT (IdentityFunctor _)
(SliceCategory_Functor LocallySmallCat
(ProductCategory A B)).
(* Anomaly: apply_coercion_args: mismatch between arguments and coercion. Please report. *)
(* Toplevel input, characters 110-142:
Error:
In environment
objA : Type
A : Category objA
objB : Type
B : Category objB
objC : Type
C : Category objC
S : OppositeCategory (FunctorCategory A C)
T : FunctorCategory B C
The term "ProductCategory A B:Category (objA * objB)" has type
"Category (objA * objB)" while it is expected to have type
"Object LocallySmallCat".
*)
End CommaCategoryProjectionFunctor.
End SecondComment.
|