1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
Generalizable All Variables.
Set Implicit Arguments.
Set Universe Polymorphism.
Axiom admit : forall {T}, T.
Reserved Infix "o" (at level 40, left associativity).
Class IsEquiv {A B : Type} (f : A -> B) := { equiv_inv : B -> A }.
Record Equiv A B := { equiv_fun :> A -> B ; equiv_isequiv :> IsEquiv equiv_fun }.
Existing Instance equiv_isequiv.
Delimit Scope equiv_scope with equiv.
Local Open Scope equiv_scope.
Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope.
Axiom IsHSet : Type -> Type.
Existing Class IsHSet.
Definition trunc_equiv' `(f : A <~> B) `{IsHSet A} : IsHSet B := admit.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.
Record PreCategory :=
{ object :> Type;
morphism : object -> object -> Type;
compose : forall s d d',
morphism d d'
-> morphism s d
-> morphism s d'
where "f 'o' g" := (compose f g);
trunc_morphism : forall s d, IsHSet (morphism s d) }.
Bind Scope category_scope with PreCategory.
Infix "o" := (@compose _ _ _ _) : morphism_scope.
Delimit Scope functor_scope with functor.
Record Functor (C D : PreCategory) :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d
-> morphism D (object_of s) (object_of d)
}.
Bind Scope functor_scope with Functor.
Arguments morphism_of [C%category] [D%category] F%functor [s%object d%object] m%morphism : rename, simpl nomatch.
Notation "F '_1' m" := (morphism_of F m) (at level 10, no associativity) : morphism_scope.
Local Open Scope morphism_scope.
Class IsIsomorphism {C : PreCategory} {s d} (m : morphism C s d) := { morphism_inverse : morphism C d s }.
Local Notation "m ^-1" := (morphism_inverse (m := m)) : morphism_scope.
Class Isomorphic {C : PreCategory} s d :=
{
morphism_isomorphic :> morphism C s d;
isisomorphism_isomorphic :> IsIsomorphism morphism_isomorphic
}.
Coercion morphism_isomorphic : Isomorphic >-> morphism.
Local Infix "<~=~>" := Isomorphic (at level 70, no associativity) : category_scope.
Definition isisomorphism_inverse `(@IsIsomorphism C x y m) : IsIsomorphism m^-1 := {| morphism_inverse := m |}.
Global Instance isisomorphism_compose `(@IsIsomorphism C y z m0) `(@IsIsomorphism C x y m1)
: IsIsomorphism (m0 o m1).
admit.
Defined.
Section composition.
Variable C : PreCategory.
Variable D : PreCategory.
Variable E : PreCategory.
Variable G : Functor D E.
Variable F : Functor C D.
Definition composeF : Functor C E
:= Build_Functor
C E
(fun c => G (F c))
(fun _ _ m => morphism_of G (morphism_of F m)).
End composition.
Infix "o" := composeF : functor_scope.
Delimit Scope natural_transformation_scope with natural_transformation.
Record NaturalTransformation C D (F G : Functor C D) := { components_of :> forall c, morphism D (F c) (G c) }.
Section compose.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F F' F'' : Functor C D.
Variable T' : NaturalTransformation F' F''.
Variable T : NaturalTransformation F F'.
Local Notation CO c := (T' c o T c).
Definition composeT
: NaturalTransformation F F'' := Build_NaturalTransformation F F'' (fun c => CO c).
End compose.
Section whisker.
Variable C : PreCategory.
Variable D : PreCategory.
Variable E : PreCategory.
Section L.
Variable F : Functor D E.
Variables G G' : Functor C D.
Variable T : NaturalTransformation G G'.
Local Notation CO c := (morphism_of F (T c)).
Definition whisker_l
:= Build_NaturalTransformation
(F o G) (F o G')
(fun c => CO c).
End L.
Section R.
Variables F F' : Functor D E.
Variable T : NaturalTransformation F F'.
Variable G : Functor C D.
Local Notation CO c := (T (G c)).
Definition whisker_r
:= Build_NaturalTransformation
(F o G) (F' o G)
(fun c => CO c).
End R.
End whisker.
Infix "o" := composeT : natural_transformation_scope.
Infix "oL" := whisker_l (at level 40, left associativity) : natural_transformation_scope.
Infix "oR" := whisker_r (at level 40, left associativity) : natural_transformation_scope.
Section path_natural_transformation.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F G : Functor C D.
Lemma equiv_sig_natural_transformation
: { CO : forall x, morphism D (F x) (G x)
| forall s d (m : morphism C s d),
CO d o F _1 m = G _1 m o CO s }
<~> NaturalTransformation F G.
admit.
Defined.
Global Instance trunc_natural_transformation
: IsHSet (NaturalTransformation F G).
Proof.
eapply trunc_equiv'; [ exact equiv_sig_natural_transformation | ].
admit.
Qed.
End path_natural_transformation.
Definition functor_category (C D : PreCategory) : PreCategory
:= @Build_PreCategory (Functor C D) (@NaturalTransformation C D) (@composeT C D) _.
Notation "C -> D" := (functor_category C D) : category_scope.
Definition NaturalIsomorphism (C D : PreCategory) F G := @Isomorphic (C -> D) F G.
Coercion natural_transformation_of_natural_isomorphism C D F G (T : @NaturalIsomorphism C D F G) : NaturalTransformation F G
:= T : morphism _ _ _.
Local Infix "<~=~>" := NaturalIsomorphism : natural_transformation_scope.
Global Instance isisomorphism_compose'
`(T' : @NaturalTransformation C D F' F'')
`(T : @NaturalTransformation C D F F')
`{@IsIsomorphism (C -> D) F' F'' T'}
`{@IsIsomorphism (C -> D) F F' T}
: @IsIsomorphism (C -> D) F F'' (T' o T)%natural_transformation
:= @isisomorphism_compose (C -> D) _ _ T' _ _ T _.
Section lemmas.
Local Open Scope natural_transformation_scope.
Variable C : PreCategory.
Variable F : C -> PreCategory.
Context
{w x y z}
{f : Functor (F w) (F z)} {f0 : Functor (F w) (F y)}
{f1 : Functor (F x) (F y)} {f2 : Functor (F y) (F z)}
{f3 : Functor (F w) (F x)} {f4 : Functor (F x) (F z)}
{f5 : Functor (F w) (F z)} {n : f5 <~=~> (f4 o f3)%functor}
{n0 : f4 <~=~> (f2 o f1)%functor} {n1 : f0 <~=~> (f1 o f3)%functor}
{n2 : f <~=~> (f2 o f0)%functor}.
Lemma p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper'
: @IsIsomorphism
(_ -> _) _ _
(n2 ^-1 o (f2 oL n1 ^-1 o (admit o (n0 oR f3 o n))))%natural_transformation.
Proof.
eapply isisomorphism_compose';
[ eapply isisomorphism_inverse
| eapply isisomorphism_compose';
[ admit
| eapply isisomorphism_compose';
[ admit |
eapply isisomorphism_compose'; [ admit | ]]]].
Set Printing All. Set Printing Universes.
apply @isisomorphism_isomorphic.
Qed.
End lemmas.
|