1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
Require Coq.Vectors.Fin.
Require Coq.Vectors.Vector.
Local Generalizable All Variables.
Set Implicit Arguments.
Arguments Fin.F1 : clear implicits.
Lemma fin_0_absurd : notT (Fin.t 0).
Proof. hnf. apply Fin.case0. Qed.
Axiom admit : forall {A}, A.
Fixpoint lower {n:nat} (p:Fin.t (S n)) {struct p} :
forall (i:Fin.t (S n)), option (Fin.t n)
:= match p in Fin.t (S n1)
return Fin.t (S n1) -> option (Fin.t n1)
with
| @Fin.F1 n1 =>
fun (i:Fin.t (S n1)) =>
match i in Fin.t (S n2) return option (Fin.t n2) with
| @Fin.F1 n2 => None
| @Fin.FS n2 i2 => Some i2
end
| @Fin.FS n1 p1 =>
fun (i:Fin.t (S n1)) =>
match i in Fin.t (S n2) return Fin.t n2 -> option (Fin.t n2) with
| @Fin.F1 n2 =>
match n2 as n3 return Fin.t n3 -> option (Fin.t n3) with
| 0 => fun p2 => False_rect _ (fin_0_absurd p2)
| S n3 => fun p2 => Some (Fin.F1 n3)
end
| @Fin.FS n2 i2 =>
match n2 as n3 return Fin.t n3 -> Fin.t n3 -> option (Fin.t n3) with
| 0 => fun i3 p3 => False_rect _ (fin_0_absurd p3)
| S n3 => fun (i3 p3:Fin.t (S n3)) =>
option_map (@Fin.FS _) admit
end i2
end p1
end.
Lemma lower_ind (P: forall n (p i:Fin.t (S n)), option (Fin.t n) -> Prop)
(c11 : forall n, P n (Fin.F1 n) (Fin.F1 n) None)
(c1S : forall n (i:Fin.t n), P n (Fin.F1 n) (Fin.FS i) (Some i))
(cS1 : forall n (p:Fin.t (S n)),
P (S n) (Fin.FS p) (Fin.F1 (S n)) (Some (Fin.F1 n)))
(cSSS : forall n (p i:Fin.t (S n)) (i':Fin.t n)
(Elow:lower p i = Some i'),
P n p i (Some i') ->
P (S n) (Fin.FS p) (Fin.FS i) (Some (Fin.FS i')))
(cSSN : forall n (p i:Fin.t (S n))
(Elow:lower p i = None),
P n p i None ->
P (S n) (Fin.FS p) (Fin.FS i) None) :
forall n (p i:Fin.t (S n)), P n p i (lower p i).
Proof.
fix 2. intros n p.
refine (match p as p1 in Fin.t (S n1)
return forall (i1:Fin.t (S n1)), P n1 p1 i1 (lower p1 i1)
with
| @Fin.F1 n1 => _
| @Fin.FS n1 p1 => _
end); clear n p.
{ revert n1. refine (@Fin.caseS _ _ _); cbn; intros.
apply c11. apply c1S. }
{ intros i1. revert p1.
pattern n1, i1; refine (@Fin.caseS _ _ _ _ _);
clear n1 i1;
(intros [|n] i; [refine (False_rect _ (fin_0_absurd i)) | cbn ]).
{ apply cS1. }
{ intros p. pose proof (admit : P n p i (lower p i)) as H.
destruct (lower p i) eqn:E.
{ admit; assumption. }
{ cbn. apply admit; assumption. } } }
Qed.
Section squeeze.
Context {A:Type} (x:A).
Notation vec := (Vector.t A).
Fixpoint squeeze {n} (v:vec n) (i:Fin.t (S n)) {struct i} : vec (S n) :=
match i in Fin.t (S _n) return vec _n -> vec (S _n)
with
| @Fin.F1 n' => fun v' => Vector.cons _ x _ v'
| @Fin.FS n' i' =>
fun v' =>
match n' as _n return vec _n -> Fin.t _n -> vec (S _n)
with
| 0 => fun u i' => False_rect _ (fin_0_absurd i')
| S m =>
fun (u:vec (S m)) =>
match u in Vector.t _ (S _m)
return Fin.t (S _m) -> vec (S (S _m))
with
| Vector.nil _ => tt
| Vector.cons _ h _ u' =>
fun j' => Vector.cons _ h _ admit (* (squeeze u' j') *)
end
end v' i'
end v.
End squeeze.
Require Import Program.
Lemma squeeze_nth (A:Type) (x:A) (n:nat) (v:Vector.t A n) p i :
Vector.nth (squeeze x v p) i = match lower p i with
| Some j => Vector.nth v j
| None => x
end.
Proof.
(* alternatively: [functional induction (lower p i) using lower_ind] *)
revert v. pattern n, p, i, (lower p i).
refine (@lower_ind _ _ _ _ _ _ n p i);
intros; cbn; auto.
(*** Fails here with "Conversion test raised an anomaly" ***)
revert v.
admit.
admit.
admit.
Qed.
|