1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
(* Check that "inversion as" manages names as expected *)
Inductive type: Set
:= | int: type
| pointer: type -> type.
Print type.
Parameter value_set
: type -> Set.
Parameter string : Set.
Parameter Z : Set.
Inductive lvalue (t: type): Set
:= | var: string -> lvalue t (* name of the variable *)
| lvalue_loc: Z -> lvalue t (* address of the variable *)
| deref_l: lvalue (pointer t) -> lvalue t (* deref an lvalue ptr *)
| deref_r: rvalue (pointer t) -> lvalue t (* deref an rvalue ptr *)
with rvalue (t: type): Set
:= | value_of: lvalue t -> rvalue t (* variable as value *)
| mk_rvalue: value_set t -> rvalue t. (* literal value *)
Print lvalue.
Inductive statement: Set
:= | void_stat: statement
| var_loc: (* to be destucted at end of scope *)
forall (t: type) (n: string) (loc: Z), statement
| var_ref: (* not to be destructed *)
forall (t: type) (n: string) (loc: Z), statement
| var_def: (* var def as typed in code *)
forall (t:type) (n: string) (val: rvalue t), statement
| assign:
forall (t: type) (var: lvalue t) (val: rvalue t), statement
| group:
forall (l: list statement), statement
| fun_def:
forall (s: string) (l: list statement), statement
| param_decl:
forall (t: type) (n: string), statement
| delete:
forall a: Z, statement.
Inductive expr: Set
:= | statement_to_expr: statement -> expr
| lvalue_to_expr: forall t: type, lvalue t -> expr
| rvalue_to_expr: forall t: type, rvalue t -> expr.
Inductive executable_prim_expr: expr -> Set
:=
(* statements *)
| var_def_primitive:
forall (t: type) (n: string) (loc: Z),
executable_prim_expr
(statement_to_expr
(var_def t n
(value_of t (lvalue_loc t loc))))
| assign_primitive:
forall (t: type) (loc1 loc2: Z),
executable_prim_expr
(statement_to_expr
(assign t (lvalue_loc t loc1)
(value_of t (lvalue_loc t loc2))))
(* rvalue *)
| mk_rvalue_primitive:
forall (t: type) (v: value_set t),
executable_prim_expr
(rvalue_to_expr t (mk_rvalue t v))
(* lvalue *)
(* var *)
| var_primitive:
forall (t: type) (n: string),
executable_prim_expr (lvalue_to_expr t (var t n))
(* deref_l *)
| deref_l_primitive:
forall (t: type) (loc: Z),
executable_prim_expr
(lvalue_to_expr t
(deref_l t (lvalue_loc (pointer t) loc)))
(* deref_r *)
| deref_r_primitive:
forall (t: type) (loc: Z),
executable_prim_expr
(lvalue_to_expr t
(deref_r t
(value_of (pointer t)
(lvalue_loc (pointer t) loc)))).
Inductive executable_sub_expr: expr -> Set
:= | executable_sub_expr_prim:
forall e: expr,
executable_prim_expr e ->
executable_sub_expr e
(* statements *)
| var_def_sub_rvalue:
forall (t: type) (n: string) (rv: rvalue t),
executable_sub_expr (rvalue_to_expr t rv) ->
executable_sub_expr (statement_to_expr (var_def t n rv))
| assign_sub_lvalue:
forall (t: type) (lv: lvalue t) (rv: rvalue t),
executable_sub_expr (lvalue_to_expr t lv) ->
executable_sub_expr (statement_to_expr (assign t lv rv))
| assign_sub_rvalue:
forall (t: type) (lv: lvalue t) (rv: rvalue t),
executable_sub_expr (rvalue_to_expr t rv) ->
executable_sub_expr (statement_to_expr (assign t lv rv))
(* rvalue *)
| value_of_sub_lvalue:
forall (t: type) (lv: lvalue t),
executable_sub_expr (lvalue_to_expr t lv) ->
executable_sub_expr (rvalue_to_expr t (value_of t lv))
(* lvalue *)
| deref_l_sub_lvalue:
forall (t: type) (lv: lvalue (pointer t)),
executable_sub_expr (lvalue_to_expr (pointer t) lv) ->
executable_sub_expr (lvalue_to_expr t (deref_l t lv))
| deref_r_sub_rvalue:
forall (t: type) (rv: rvalue (pointer t)),
executable_sub_expr (rvalue_to_expr (pointer t) rv) ->
executable_sub_expr (lvalue_to_expr t (deref_r t rv)).
Inductive expr_kind: Set
:= | statement_kind: expr_kind
| lvalue_kind: type -> expr_kind
| rvalue_kind: type -> expr_kind.
Definition expr_to_kind: expr -> expr_kind.
intro e.
destruct e.
exact statement_kind.
exact (lvalue_kind t).
exact (rvalue_kind t).
Defined.
Inductive def_sub_expr_subs:
forall e: expr,
forall ee: executable_sub_expr e,
forall ee': expr,
forall e': expr,
Prop
:= | def_sub_expr_subs_prim:
forall e: expr,
forall p: executable_prim_expr e,
forall ee': expr,
expr_to_kind e = expr_to_kind ee' ->
def_sub_expr_subs e (executable_sub_expr_prim e p) ee' ee'
| def_sub_expr_subs_var_def_sub_rvalue:
forall (t: type) (n: string),
forall rv rv': rvalue t,
forall ee': expr,
forall se_rv: executable_sub_expr (rvalue_to_expr t rv),
def_sub_expr_subs (rvalue_to_expr t rv) se_rv ee'
(rvalue_to_expr t rv') ->
def_sub_expr_subs
(statement_to_expr (var_def t n rv))
(var_def_sub_rvalue t n rv se_rv)
ee'
(statement_to_expr (var_def t n rv'))
| def_sub_expr_subs_assign_sub_lvalue:
forall t: type,
forall lv lv': lvalue t,
forall rv: rvalue t,
forall ee': expr,
forall se_lv: executable_sub_expr (lvalue_to_expr t lv),
def_sub_expr_subs (lvalue_to_expr t lv) se_lv ee'
(lvalue_to_expr t lv') ->
def_sub_expr_subs
(statement_to_expr (assign t lv rv))
(assign_sub_lvalue t lv rv se_lv)
ee'
(statement_to_expr (assign t lv' rv))
| def_sub_expr_subs_assign_sub_rvalue:
forall t: type,
forall lv: lvalue t,
forall rv rv': rvalue t,
forall ee': expr,
forall se_rv: executable_sub_expr (rvalue_to_expr t rv),
def_sub_expr_subs (rvalue_to_expr t rv) se_rv ee'
(rvalue_to_expr t rv') ->
def_sub_expr_subs
(statement_to_expr (assign t lv rv))
(assign_sub_rvalue t lv rv se_rv)
ee'
(statement_to_expr (assign t lv rv'))
| def_sub_expr_subs_value_of_sub_lvalue:
forall t: type,
forall lv lv': lvalue t,
forall ee': expr,
forall se_lv: executable_sub_expr (lvalue_to_expr t lv),
def_sub_expr_subs (lvalue_to_expr t lv) se_lv ee'
(lvalue_to_expr t lv') ->
def_sub_expr_subs
(rvalue_to_expr t (value_of t lv))
(value_of_sub_lvalue t lv se_lv)
ee'
(rvalue_to_expr t (value_of t lv'))
| def_sub_expr_subs_deref_l_sub_lvalue:
forall t: type,
forall lv lv': lvalue (pointer t),
forall ee': expr,
forall se_lv: executable_sub_expr (lvalue_to_expr (pointer t) lv),
def_sub_expr_subs (lvalue_to_expr (pointer t) lv) se_lv ee'
(lvalue_to_expr (pointer t) lv') ->
def_sub_expr_subs
(lvalue_to_expr t (deref_l t lv))
(deref_l_sub_lvalue t lv se_lv)
ee'
(lvalue_to_expr t (deref_l t lv'))
| def_sub_expr_subs_deref_r_sub_rvalue:
forall t: type,
forall rv rv': rvalue (pointer t),
forall ee': expr,
forall se_rv: executable_sub_expr (rvalue_to_expr (pointer t) rv),
def_sub_expr_subs (rvalue_to_expr (pointer t) rv) se_rv ee'
(rvalue_to_expr (pointer t) rv') ->
def_sub_expr_subs
(lvalue_to_expr t (deref_r t rv))
(deref_r_sub_rvalue t rv se_rv)
ee'
(lvalue_to_expr t (deref_r t rv')).
Lemma type_dec: forall t t': type, {t = t'} + {t <> t'}.
Proof.
intros t.
induction t as [|t IH].
destruct t'.
tauto.
right.
discriminate.
destruct t'.
right.
discriminate.
destruct (IH t') as [H|H].
left.
f_equal.
tauto.
right.
injection.
tauto.
Qed.
Check type_dec.
Definition sigT_get_proof:
forall T: Type,
forall eq_dec_T: forall t t': T, {t = t'} + {~ t = t'},
forall P: T -> Type,
forall t: T,
P t ->
sigT P ->
P t.
intros T eq_dec_T P t H1 H2.
destruct H2 as [t' H2].
destruct (eq_dec_T t t') as [H3|H3].
rewrite H3.
exact H2.
exact H1.
Defined.
Axiom sigT_get_proof_existT_same:
forall T: Type,
forall eq_dec_T: forall t t': T, {t = t'} + {~ t = t'},
forall P: T -> Type,
forall t: T,
forall H1 H2: P t,
sigT_get_proof T eq_dec_T P t H1 (existT P t H2) = H2.
Theorem existT_injective:
forall T,
(forall t1 t2: T, { t1 = t2 } + { t1 <> t2 }) ->
forall P: T -> Type,
forall t: T,
forall pt1 pt2: P t,
existT P t pt1 = existT P t pt2 ->
pt1 = pt2.
Proof.
intros T T_dec P t pt1 pt2 H1.
pose (H2 := f_equal (sigT_get_proof T T_dec P t pt1) H1).
repeat rewrite sigT_get_proof_existT_same in H2.
assumption.
Qed.
Ltac decide_equality_sub dec x x' H :=
destruct (dec x x') as [H|H];
[subst x'; try tauto|try(right; injection; tauto; fail)].
Axiom value_set_dec:
forall t: type,
forall v v': value_set t,
{v = v'} + {v <> v'}.
Theorem lvalue_dec:
forall (t: type) (l l': lvalue t), {l = l'} + {l <> l'}
with rvalue_dec:
forall (t: type) (r r': rvalue t), {r = r'} + {r <> r'}.
Admitted.
Theorem sub_expr_subs_same_kind:
forall e: expr,
forall ee: executable_sub_expr e,
forall ee': expr,
forall e': expr,
def_sub_expr_subs e ee ee' e' ->
expr_to_kind e = expr_to_kind e'.
Proof.
intros e ee ee' e' H1.
case H1; try (intros; tauto; fail).
Qed.
Theorem def_sub_expr_subs_assign_sub_lvalue_inversion:
forall t: type,
forall lv: lvalue t,
forall rv: rvalue t,
forall ee' e': expr,
forall ee_sub: executable_sub_expr (lvalue_to_expr t lv),
def_sub_expr_subs (statement_to_expr (assign t lv rv))
(assign_sub_lvalue t lv rv ee_sub) ee' e' ->
{ lv': lvalue t
| def_sub_expr_subs (lvalue_to_expr t lv) ee_sub ee'
(lvalue_to_expr t lv')
& e' = statement_to_expr (assign t lv' rv) }.
Proof.
intros t lv rv ee' [s'|t' lv''|t' rv''] ee_sub H1;
try discriminate (sub_expr_subs_same_kind _ _ _ _ H1).
destruct s' as [| | | |t' lv'' rv''| | | |];
try(assert (H2: False); [inversion H1|elim H2]; fail).
destruct (type_dec t t') as [H2|H2];
[|assert (H3: False);
[|elim H3; fail]].
2: inversion H1 as [];tauto.
subst t'.
exists lv''.
inversion H1 as
[| |t' lv''' lv'''' rv''' ee'' ee_sub' H2 (H3_1,H3_2,H3_3) (H4_1,H4_2,H4_3,H4_4,H4_5) H5 (H6_1,H6_2)| | | |].
(* Check that all names are the given ones: *)
clear t' lv''' lv'''' rv''' ee'' ee_sub' H2 H3_1 H3_2 H3_3 H4_1 H4_2 H4_3 H4_4 H4_5 H5 H6_1 H6_2.
|