blob: 1729695d1331fd30a72bad27f321a77f37ad00af (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(*i $Id: tauto.ml4 11739 2009-01-02 19:33:19Z herbelin $ i*)
open Term
open Hipattern
open Names
open Libnames
open Pp
open Proof_type
open Tacticals
open Tacinterp
open Tactics
open Util
let assoc_var s ist =
match List.assoc (Names.id_of_string s) ist.lfun with
| VConstr c -> c
| _ -> failwith "tauto: anomaly"
(** Parametrization of tauto *)
(* Whether conjunction and disjunction are restricted to binary connectives *)
(* (this is the compatibility mode) *)
let binary_mode = true
(* Whether conjunction and disjunction are restricted to the connectives *)
(* having the structure of "and" and "or" (up to the choice of sorts) in *)
(* contravariant position in an hypothesis (this is the compatibility mode) *)
let strict_in_contravariant_hyp = true
(* Whether conjunction and disjunction are restricted to the connectives *)
(* having the structure of "and" and "or" (up to the choice of sorts) in *)
(* an hypothesis and in the conclusion *)
let strict_in_hyp_and_ccl = false
(* Whether unit type includes equality types *)
let strict_unit = false
(** Test *)
let is_empty ist =
if is_empty_type (assoc_var "X1" ist) then
<:tactic<idtac>>
else
<:tactic<fail>>
(* Strictly speaking, this exceeds the propositional fragment as it
matches also equality types (and solves them if a reflexivity) *)
let is_unit_or_eq ist =
let test = if strict_unit then is_unit_type else is_unit_or_eq_type in
if test (assoc_var "X1" ist) then
<:tactic<idtac>>
else
<:tactic<fail>>
let is_record t =
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
mib.Declarations.mind_record
| _ -> false
let is_binary t =
isApp t &&
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
mib.Declarations.mind_nparams = 2
| _ -> false
let iter_tac tacl =
List.fold_right (fun tac tacs -> <:tactic< $tac; $tacs >>) tacl
(** Dealing with conjunction *)
let is_conj ist =
let ind = assoc_var "X1" ist in
if (not binary_mode || is_binary ind) (* && not (is_record ind) *)
&& is_conjunction ~strict:strict_in_hyp_and_ccl ind
then
<:tactic<idtac>>
else
<:tactic<fail>>
let flatten_contravariant_conj ist =
let typ = assoc_var "X1" ist in
let c = assoc_var "X2" ist in
match match_with_conjunction ~strict:strict_in_contravariant_hyp typ with
| Some (_,args) ->
let i = List.length args in
if not binary_mode || i = 2 then
let newtyp = valueIn (VConstr (List.fold_right mkArrow args c)) in
let intros =
iter_tac (List.map (fun _ -> <:tactic< intro >>) args)
<:tactic< idtac >> in
<:tactic<
let newtyp := $newtyp in
assert newtyp by ($intros; apply id; split; assumption);
clear id
>>
else
<:tactic<fail>>
| _ ->
<:tactic<fail>>
(** Dealing with disjunction *)
let is_disj ist =
let t = assoc_var "X1" ist in
if (not binary_mode || is_binary t) &&
is_disjunction ~strict:strict_in_hyp_and_ccl t
then
<:tactic<idtac>>
else
<:tactic<fail>>
let flatten_contravariant_disj ist =
let typ = assoc_var "X1" ist in
let c = assoc_var "X2" ist in
match match_with_disjunction ~strict:strict_in_contravariant_hyp typ with
| Some (_,args) ->
let i = List.length args in
if not binary_mode || i = 2 then
iter_tac (list_map_i (fun i arg ->
let typ = valueIn (VConstr (mkArrow arg c)) in
<:tactic<
let typ := $typ in
assert typ by (intro; apply id; constructor $i; assumption)
>>) 1 args) <:tactic< clear id >>
else
<:tactic<fail>>
| _ ->
<:tactic<fail>>
(** Main tactic *)
let not_dep_intros ist =
<:tactic<
repeat match goal with
| |- (?X1 -> ?X2) => intro
| |- (Coq.Init.Logic.not _) => unfold Coq.Init.Logic.not at 1
| H:(Coq.Init.Logic.not _)|-_ => unfold Coq.Init.Logic.not at 1 in H
| H:(Coq.Init.Logic.not _)->_|-_ => unfold Coq.Init.Logic.not at 1 in H
end >>
let axioms ist =
let t_is_unit_or_eq = tacticIn is_unit_or_eq
and t_is_empty = tacticIn is_empty in
<:tactic<
match reverse goal with
| |- ?X1 => $t_is_unit_or_eq; constructor 1
| _:?X1 |- _ => $t_is_empty; elimtype X1; assumption
| _:?X1 |- ?X1 => assumption
end >>
let simplif ist =
let t_is_unit_or_eq = tacticIn is_unit_or_eq
and t_is_conj = tacticIn is_conj
and t_flatten_contravariant_conj = tacticIn flatten_contravariant_conj
and t_flatten_contravariant_disj = tacticIn flatten_contravariant_disj
and t_is_disj = tacticIn is_disj
and t_not_dep_intros = tacticIn not_dep_intros in
<:tactic<
$t_not_dep_intros;
repeat
(match reverse goal with
| id: ?X1 |- _ => $t_is_conj; elim id; do 2 intro; clear id
| id: (Coq.Init.Logic.iff _ _) |- _ => elim id; do 2 intro; clear id
| id: ?X1 |- _ => $t_is_disj; elim id; intro; clear id
| id0: ?X1-> ?X2, id1: ?X1|- _ =>
(* generalize (id0 id1); intro; clear id0 does not work
(see Marco Maggiesi's bug PR#301)
so we instead use Assert and exact. *)
assert X2; [exact (id0 id1) | clear id0]
| id: ?X1 -> ?X2|- _ =>
$t_is_unit_or_eq; cut X2;
[ intro; clear id
| (* id : ?X1 -> ?X2 |- ?X2 *)
cut X1; [exact id| constructor 1; fail]
]
| id: ?X1 -> ?X2|- _ =>
$t_flatten_contravariant_conj
(* moved from "id:(?A/\?B)->?X2|-" to "?A->?B->?X2|-" *)
| id: (Coq.Init.Logic.iff ?X1 ?X2) -> ?X3|- _ =>
assert ((X1 -> X2) -> (X2 -> X1) -> X3)
by (do 2 intro; apply id; split; assumption);
clear id
| id: ?X1 -> ?X2|- _ =>
$t_flatten_contravariant_disj
(* moved from "id:(?A\/?B)->?X2|-" to "?A->?X2|-" and "?B->?X2|-" *)
| |- ?X1 => $t_is_conj; split
| |- (Coq.Init.Logic.iff _ _) => split
end;
$t_not_dep_intros) >>
let rec tauto_intuit t_reduce solver ist =
let t_axioms = tacticIn axioms
and t_simplif = tacticIn simplif
and t_is_disj = tacticIn is_disj
and t_tauto_intuit = tacticIn (tauto_intuit t_reduce solver) in
let t_solver = globTacticIn (fun _ist -> solver) in
<:tactic<
($t_simplif;$t_axioms
|| match reverse goal with
| id:(?X1-> ?X2)-> ?X3|- _ =>
cut X3;
[ intro; clear id; $t_tauto_intuit
| cut (X1 -> X2);
[ exact id
| generalize (fun y:X2 => id (fun x:X1 => y)); intro; clear id;
solve [ $t_tauto_intuit ]]]
| |- ?X1 =>
$t_is_disj; solve [left;$t_tauto_intuit | right;$t_tauto_intuit]
end
||
(* NB: [|- _ -> _] matches any product *)
match goal with | |- _ -> _ => intro; $t_tauto_intuit
| |- _ => $t_reduce;$t_solver
end
||
$t_solver
) >>
let reduction_not_iff _ist =
<:tactic< unfold Coq.Init.Logic.not, Coq.Init.Logic.iff in * >>
let t_reduction_not_iff = tacticIn reduction_not_iff
let intuition_gen tac =
interp (tacticIn (tauto_intuit t_reduction_not_iff tac))
let simplif_gen = interp (tacticIn simplif)
let tauto g =
try intuition_gen <:tactic<fail>> g
with
Refiner.FailError _ | UserError _ ->
errorlabstrm "tauto" (str "tauto failed.")
let default_intuition_tac = <:tactic< auto with * >>
TACTIC EXTEND tauto
| [ "tauto" ] -> [ tauto ]
END
TACTIC EXTEND intuition
| [ "intuition" ] -> [ intuition_gen default_intuition_tac ]
| [ "intuition" tactic(t) ] -> [ intuition_gen (fst t) ]
END
|