summaryrefslogtreecommitdiff
path: root/tactics/tauto.ml4
blob: 17ea121f0ae55533bd93fb77cdba09de948b3f5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i camlp4deps: "parsing/grammar.cma" i*)

(*i $Id: tauto.ml4 11309 2008-08-06 10:30:35Z herbelin $ i*)

open Term
open Hipattern
open Names
open Libnames
open Pp
open Proof_type
open Tacticals
open Tacinterp
open Tactics
open Util

let assoc_last ist =
  match List.assoc (Names.id_of_string "X1") ist.lfun with
    | VConstr c -> c
    | _ -> failwith "tauto: anomaly"

let is_empty ist =
  if is_empty_type (assoc_last ist) then
    <:tactic<idtac>>
  else
    <:tactic<fail>>

let is_unit ist =
  if is_unit_type (assoc_last ist) then
    <:tactic<idtac>>
  else
    <:tactic<fail>>

let is_record t =
  let (hdapp,args) = decompose_app t in
    match (kind_of_term hdapp) with
      | Ind ind  -> 
          let (mib,mip) = Global.lookup_inductive ind in
	    mib.Declarations.mind_record
      | _ -> false

let is_binary t =
  let (hdapp,args) = decompose_app t in
    match (kind_of_term hdapp) with
    | Ind ind  -> 
        let (mib,mip) = Global.lookup_inductive ind in
	  mib.Declarations.mind_nparams = 2
    | _ -> false
	
let is_conj ist =
  let ind = assoc_last ist in
    if (is_conjunction ind) && (is_nodep_ind ind) (* && not (is_record ind)  *)
      && is_binary ind (* for compatibility, as (?X _ _) matches 
			  applications with 2 or more arguments. *)
    then
      <:tactic<idtac>>
    else
      <:tactic<fail>>

let is_disj ist =
  if is_disjunction (assoc_last ist) && is_binary (assoc_last ist) then
    <:tactic<idtac>>
  else
    <:tactic<fail>>

let not_dep_intros ist =
  <:tactic<
  repeat match goal with
  | |- (?X1 -> ?X2) => intro
  | |- (Coq.Init.Logic.iff _ _) => unfold Coq.Init.Logic.iff
  | |- (Coq.Init.Logic.not _)   => unfold Coq.Init.Logic.not
  | H:(Coq.Init.Logic.iff _ _)|- _ => unfold Coq.Init.Logic.iff in H
  | H:(Coq.Init.Logic.not _)|-_    => unfold Coq.Init.Logic.not in H
  | H:(Coq.Init.Logic.iff _ _)->_|- _ => unfold Coq.Init.Logic.iff in H
  | H:(Coq.Init.Logic.not _)->_|-_    => unfold Coq.Init.Logic.not in H
  end >>
				      
let axioms ist =
  let t_is_unit = tacticIn is_unit
  and t_is_empty = tacticIn is_empty in
    <:tactic<
    match reverse goal with
      | |- ?X1 => $t_is_unit; constructor 1
      | _:?X1 |- _ => $t_is_empty; elimtype X1; assumption
      | _:?X1 |- ?X1 => assumption
    end >>


let simplif ist =
  let t_is_unit = tacticIn is_unit
  and t_is_conj = tacticIn is_conj
  and t_is_disj = tacticIn is_disj
  and t_not_dep_intros = tacticIn not_dep_intros in
  <:tactic<
    $t_not_dep_intros;
    repeat
       (match reverse goal with
        | id: (?X1 _ _) |- _ =>
            $t_is_conj; elim id; do 2 intro; clear id
        | id: (?X1 _ _) |- _ => $t_is_disj; elim id; intro; clear id
        | id0: ?X1-> ?X2, id1: ?X1|- _ =>
	    (* generalize (id0 id1); intro; clear id0 does not work
	       (see Marco Maggiesi's bug PR#301)
	    so we instead use Assert and exact. *)
	    assert X2; [exact (id0 id1) | clear id0]
        | id: ?X1 -> ?X2|- _ =>
          $t_is_unit; cut X2;
	    [ intro; clear id
	    | (* id : ?X1 -> ?X2 |- ?X2 *)
	      cut X1; [exact id| constructor 1; fail]
	    ]
        | id: (?X1 ?X2 ?X3) -> ?X4|- _ =>
          $t_is_conj; cut (X2-> X3-> X4);
	    [ intro; clear id
	    | (* id: (?X1 ?X2 ?X3) -> ?X4 |- ?X2 -> ?X3 -> ?X4 *)
	      intro; intro; cut (X1 X2 X3); [exact id| split; assumption]
	    ]
        | id: (?X1 ?X2 ?X3) -> ?X4|- _ =>
          $t_is_disj;
	    cut (X3-> X4);
	      [cut (X2-> X4);
	        [intro; intro; clear id
		| (* id: (?X1 ?X2 ?X3) -> ?X4 |- ?X2 -> ?X4 *)
		  intro; cut (X1 X2 X3); [exact id| left; assumption]
		]
	      | (* id: (?X1 ?X2 ?X3) -> ?X4 |- ?X3 -> ?X4 *)
		intro; cut (X1 X2 X3); [exact id| right; assumption]
	      ]
        | |- (?X1 _ _) => $t_is_conj; split
        end;
        $t_not_dep_intros) >>

let rec tauto_intuit t_reduce solver ist =
  let t_axioms = tacticIn axioms
  and t_simplif = tacticIn simplif
  and t_is_disj = tacticIn is_disj
  and t_tauto_intuit = tacticIn (tauto_intuit t_reduce solver) in
  let t_solver = globTacticIn (fun _ist -> solver) in
  <:tactic<
   ($t_simplif;$t_axioms
   || match reverse goal with
      | id:(?X1-> ?X2)-> ?X3|- _ =>
	  cut X3;
	    [ intro; clear id; $t_tauto_intuit 
	    | cut (X1 -> X2);
		[ exact id
		| generalize (fun y:X2 => id (fun x:X1 => y)); intro; clear id;
		  solve [ $t_tauto_intuit ]]]
      | |- (?X1 _ _) =>
          $t_is_disj; solve [left;$t_tauto_intuit | right;$t_tauto_intuit]
      end
    ||
    (* NB: [|- _ -> _] matches any product *)
    match goal with | |- _ -> _ => intro; $t_tauto_intuit
    |  |- _  => $t_reduce;$t_solver
    end
    ||
    $t_solver
   ) >>
    
let reduction_not_iff _ist =
 <:tactic<repeat 
  match goal with 
  | |- _     => progress unfold Coq.Init.Logic.not, Coq.Init.Logic.iff 
  | H:_ |- _ => progress unfold Coq.Init.Logic.not, Coq.Init.Logic.iff in H
  end >>

let t_reduction_not_iff = tacticIn reduction_not_iff

let intuition_gen tac =
  interp (tacticIn (tauto_intuit t_reduction_not_iff tac))

let simplif_gen = interp (tacticIn simplif)

let tauto g =
  try intuition_gen <:tactic<fail>> g
  with
    Refiner.FailError _ | UserError _ ->
      errorlabstrm "tauto" (str "tauto failed.")

let default_intuition_tac = <:tactic< auto with * >>

TACTIC EXTEND tauto
| [ "tauto" ] -> [ tauto ]
END

TACTIC EXTEND intuition
| [ "intuition" ] -> [ intuition_gen default_intuition_tac ]
| [ "intuition" tactic(t) ] -> [ intuition_gen (fst t) ]
END